首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of decomposition of H2O2 in the presence of Fe(III)-y complex (y is ethylenebis(oxyethylenedinitrilo)tetraacetic acid (EGTA) anion) was investigated under variable conditions of pH and temperature, various water-miscible solvents, and different concentrations of H2O2, [Fe-y], and acetate ions. The following rate law holds: Rate = (k1K3K4/[H+]) [Fe-y(OH)]2− [H2O2] at pH less than 9.80, and Rate = (k2K5[H+]/K3) [Fe-y(OH)2]3−[OOH] at pH above 9.80. The values of k1K4and k2K5 at 25 °C were found to be 1523 and 0.747 M−1 S−1, respectively. Activation enthalpy and activation entropy for this reaction were determined from Arrhenius plots and found to be ΔH* = 34.38 K J mol−1 and ΔS* = −167.2 J K−1 mol−1.  相似文献   

2.
Summary Volumetric measurements of ethylene and simple EDTA titration of copper(I) and copper(II) ions confirm that [CuL]+ and [CuL2]+ are formed when an aqueous solution of copper(II) is reduced by copper metal in the presence of ethylene, (L). The formation constants,K 1=[CuL+]2[Cu2+]–1[L]–2 andK 2=[CuL 2 + ]–1[L]–1, have been estimated. The formation of [CuL]+ is accompanied by an enthalpy change, H, of –25 kJ mol–1, and a positive entropy change, S, of 13 J mol–1 K–1.  相似文献   

3.
Summary The kinetics of oxygen-transfer from [MoO2(Et-L-cys)2] to PPh3 and the reaction between [Mo2O3(Et-L-cys)4] and O2 in benzene solution have been investigated using spectrophotometric techniques between 25 and 40°. The rate laws-d[Mo6+]/dt = k1[Mo6+][PPh3] with k1 (at 35°) = 2.95×10–4dm3mol–1s–1 and -d[Mo5+]/dt = 2k3[Mo5+][O2] with k3 (at 35°) = 6.3×10–2 dm3mol–1s–1 account for the kinetic data obtained with activation parameters (at 35°) of H = 46 kJ mol–1, S = –153 JK–1mol–1, and H = 50.8 kJ mol–1, S = –95 JK–1 mol–1 respectively.  相似文献   

4.
Zusammenfassung Das bei der Umsetzung von K2S2O8 mit SO3 entweichende SO2 entstammt dem SO3 und nicht dem K2S2O8, wie sich durch Markeirung des SO3 mit35S beweisen läßt. Der Kern des gleichzeitig gebildeten K2S3O10 baut sich ebenfalls aus35SO3 und nicht aus dem ursprünglichen K2S2O8 auf. Im K2S3O10 aus dieser Reaktion tauschen nur 2 S-Atome mit dem35S des umgebenden Lösungsmittels aus. Durch Zersetzung von K2S2O6 mit35SO3 entstehendes K2S3O10 besitzt dagegen einen inaktiven Kern als Bruchstück des zerstörten Dithionations. Die Reaktione lassen sich in die vereinfachten Gleichungen fassen: K+[O-SO2-OO--SO2-O]K++x 35SO3O2+35SO2+K+[O3 35O35SO2O. ·35SO3]K++2SO3+(x–4)35SO3 und K+[O-SO2-SO2--O]K++235SO3SO2+K+[O3 35OSO2O·35SO3]K+.Mit 1 AbbildungHerrn Prof.Dr. O. Kratky zum 60. Geburtstag gewidmet.6. Mitt. vgl.J. Rademachers undU. Wannagat, Angew. Chem.69, 782 (1957) als vorläufige Mitt.; die ausführliche Darst., erfolgt in Z. anorg. allg. Chem. (in Vorbereitung); vgl. auch Angew. Chem.70, 405 (1958).Auszug aus der DissertationA. Blaschette, Techn. Hochsch. Aachen 1960.  相似文献   

5.
Summary The kinetics of acid hydrolysis ofcis-[CoCl(btzH)(en)2]2+ andcis-[CoCl(btzMe)(en)2]2+ complexes (where btzH = benzotriazole, btzMe =N-methylbenzotriazole and en = ethylenediamine) have been investigated in HClO4 at ionic strength 1 = 0.25 mol dm–3 in the 30–40° range. In the 1.0 x 10–1 to 1.0 X 10–3 mol dm–3 acid strength range, the rate of aquation of the [CoCl(btzH)(en)2]2+ cation follows the relationship:-d ln[complex]/dt = k1 + k2KNH[H+]–1, where k1 and k2 are aquation rate constants of the acid independent and acid dependent steps respectively, and KNH is the acid dissociation constant of the coordinated benzotriazole.cis-[CoCl(btzMe)-(en)2]2+ undergoes acid independent hydrolysis presumably due to the absence of a labile N-H proton. The base hydrolysis could be followed for thecis-[CoCl(btzMe)(en)2]2+ complex only by measuring hydrolysis rates at 0°.  相似文献   

6.
The kinetics of oxidation of nitrilotris(methylenephosphonato)chromium(III), CrIIINTMP, by periodate to yield CrVI have been studied spectrophotometrically over the 5.80–6.85 pH range at 22–33 °C. The reaction rate, which is first-order with respect to [CrIIINTMP] and [IO 4] and inversely dependent on [H+], obeys the rate law:-d[CrIIINTMP/dt=kKKh[IO- 4] [CrIII]T/Kh+ [H+] +KKh[IO- 4] The values of the intramolecular electron transfer, k, and the formation constant of the intermediate complex, K, were determined at various temperatures. The hydrolysis constant for CrIIINTMP, K h , was determined spectrophotometrically and is in agreement with the value estimated from the kinetic data. The activation parameters were calculated from the temperature dependence of the specific rate constants. A mechanism is proposed in which the hydroxo complex, [CrHNTMP(OH)]3–, is the reactive species. The results support a mechanism where intramolecular electron transfer is the rate-determining step.  相似文献   

7.
The kinetics of tetraamminecopper(II)-catalysed oxidation of SO2– 3 to SO2– 4 in ammonia buffers and in a nitrogen atmosphere obeys the rate law: –d[SIV]/dt = k 2[CuII][SO3 2–][NH3]–1. There is spectrophotometric evidence for the formation of the intermediate complex [Cu(NH3)3(SO3)] in a pre-equilibrium.  相似文献   

8.
Summary A kinetic study of the regioselective homogeneous hydrogenation of quinoline (Q) to 1,2,3,4-tetrahydroquinoline (THQ) was carried out using the cationic complex [RuH(CO)(NCMe)2(PPh3)2]BF4 (1) as the precatalyst. The experimentally determined rate law wasr = {k 2 K 1/(1+K 1[H2])}[Ru0][H2]2, which becomesr = {k 2 K 1[Ru0]–[H2]2 at low hydrogen concentrations (k 2 K 1 = 28.5M –2 s–1 at 398 K). The corresponding activation parameters were found to be H = 42 + 6 kJ mol–1, S = – 115 ± 2JK–1mol–1 and G = 92 ± 8 kJ mol–1. Complex(1) was found to react with Q in CHCl3 under reflux to yield [RuH(CO)(NCMe)(N-Q)(PPh3)2]BF4 (2) which was also isolated from the hydrogenation runs. These experimental findings, together with the results ofab initio self-consistent-field molecular orbital calculations on the free organic molecules involved, are consistent with a mechanism involving a rapid and reversible partial hydrogenation of(2) to yield the corresponding dihydroquinoline (DHQ) species [RuH(CO)(NCMe)(DHQ)(PPh3)2]BF4 (4), followed by a rate-determining second hydrogenation of DHQ to yield [RuH(CO)(NCMe)(THQ)(PPh3)2]BF4 (3).  相似文献   

9.
The reaction of meso-tetraphenylporphyrin with Mo(VI) oxide in boiling phenol resulted in a stable complex O=Mo(OH)TPP. Thermodynamics and kinetics of the reaction between (oxo)(hydroxo)molybdenumtetraphenyporphyrin with pyridine in toluene were studied by spectrophotometric method. This reaction was found to occur in three equilibrium elementary stages: replacement of OH by Py (K 1=9.1 × 103 l/mol, k 1=5.25 s–1 mol–1 l), the formation of dication (dipyridine)(hydroxo)molybdenumtetraphenylporphyrin as a result of cleavage of a double bond Mo=O (K 2=39.3 l/mol, k 2=1.83 × 10–2 s-1 mol–1 l), and the formation of cationic complex[Mo(Py)3TPP]3+ · 3OH (K 3=1.0 l/mol, k 3=1.19 × 10–3 s–1 mol–1 l).__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 5, 2005, pp. 380–386.Original Russian Text Copyright © 2005 by Tipugina, Lomova, Motorina.  相似文献   

10.
The kinetics of oxidation of [CoIINM(H2O)]3– (N = nitrilotriacetate, M = malonate) by N-bromosuccinimide (NBS) in aqueous solution have been found to obey the equation: d[CoIII]/dt = k 1 K 2[NBS][CoII]T/{1 + K2[NBS] + (H+/K1)} where k 1 is the rate constant for the electron transfer process, K 1 the equilibrium constant for dissociation of [CoIINM(H2O)]3– to [CoIINM(OH)]4– + H+, and K 2 the pre-equilibrium formation constant. Values of k 1 = 1.07 × 10–3 s–1, K 1 = 4.74 × 10–8 mol dm–3 and K 2 = 472 dm3 mol–1 have been obtained at 30 °C and I = 0.2 mol dm–3. The thermodynamic activation parameters have been calculated. The experimental rate law is consistent with a mechanism in which the deprotonated [CoIINM(OH)]4– is considered to be the most reactive species compared to its conjugate acid. It is assumed that electron transfer takes place via an inner-sphere mechanism.  相似文献   

11.
The kinetics of acid-catalyzed hydrolysis of the [Co(en)(L)2(O2CO)]+ ion (L = imidazole, 1-methylimidazole, 2-methylimidazole) follows the rate law –d[complex]/dt = {k 1 K[H+]/(1 + K[H+])}[complex] (15–30 or 25–40 °C, [H+] = 0.1–1.0 M and I = 1.0 M (NaClO4)). The reaction course consists of a rapid pre-equilibrium protonation, followed by a rate determining chelate ring opening process and subsequent fast release of the one-end bound carbonato ligand. Kinetic parameters, k 1 and K, at 25 °C are 5.5 × 10–2 s–1, 0.44 M–1 (ImH), 5.1 × 10–2 s–1, 0.54 M–1 (1-Meim) and 3.8 × 10–3 s–1, 0.74 M–1 (2-MeimH) respectively, and activation parameters for k 1 are H1 = 43.7 ± 8.9 kJ mol–1, S1 = –123 ± 30 J mol–1 deg–1 (ImH), H1 = 43.1 ± 0.3 kJ mol–1, S1 = –125 ± 1 J mol–1 deg–1 (1-Meim) and H1 = 64.2 ± 4.3 kJ mol–1, S1 = –77 ± 14 J mol–1 deg–1 (2-MeimH). The results are compared with those for similar cobalt(III) complexes.  相似文献   

12.
Summary The kinetics of oxidation of [CoII(EDTA)]2- (EDTA = ethylenediaminetetraacetate) by N-bromosuccinimide (NBS) in aqueous solution obey the equation: Rate = k 2 K 3[CoII]T[NBS]/{1 + [H+]/K 2 + K 3[NBS]} where k 2 is the rate constant for the electron-transfer process, K 2 the equilibrium constant for the dissociation of [CoII(EDTAH)(H2O)] to [CoII(EDTA)(OH)]3– and K 3 the pre-equilibrium formation constant. The activation parameters are reported. It is proposed that electron transfer proceeds via an inner-sphere mechanism with the formation of an intermediate which slowly generates hexadentate[CoIII(EDTA)].Abstracted from the M.Sc. thesis of Eman S. H. Khaled.  相似文献   

13.
A detailed investigation of the oxidation of L-ascorbic acid (H2A) by the title complex has been carried out using conventional spectrophotometry at 510 nm, over the ranges: 0.010 [ascorbate] T 0.045 mol dm–3, 3.62 pH 5.34, and 12.0 30.0 °C, 0.50 I 1.00 mol dm–3, and at ionic strength 0.60 mol dm–3 (NaClO4). The main reaction products are the bis(pyridine-2,6-dicarboxylate)cobaltate(II) ion and l-dehydroascorbic acid. The reaction rate is dependent on pH and the total ascorbate concentration in a complex manner, i.e., k obs = (k 1 K 1)[ascorbate] T /(K 1 + [H+]). The second order rate constant, k 1 [rate constant for the reaction of the cobalt(III) complex and HA] at 25.0 °C is 2.31 ± 0.13 mol–1 dm3 s–1. H = 30 ± 4 kJ mol–1 and S = –138 ± 13 J mol–1 K–1. K 1, the dissociation constant for H2A, was determined as 1.58 × 10–4 mol dm–3 at an ionic strength of 0.60 mol dm–3, while the self exchange rate constant, k 11 for the title complex, was determined as 1.28 × 10–5 dm3 mol–1 s–1. An outer-sphere electron transfer mechanism has been proposed.  相似文献   

14.
A kinetic study of the exchange reaction between UO2EDTA complex and Fe(III), at a constant ionic strength of 0.1, over the concentration range of 5×10–3–1×10–2 M of each reactant and pH 4.5–5.5 has been carried out radiometrically. The rate of the exchange process can be expressed by the equation: R=k1[UO2EDTA][Fe]+k2[EDTA][H+]–1. The activation parameters calculated were H*=25.95 kJ mol–1 and S*=0.67 kJ mol–1 K–1.  相似文献   

15.
Summary The kinetics of the exchange reaction between [Y(APTA)] and CuII have been investigated over a range of [H+] from 2.5×10–5 to 7.5×10–4 mol dm–3 at 30°C and ionic strength 0.2 mol dm–3 KNO3. The results show that the exchange reaction proceeds via both self-and proton-catalyzed dissociation of [Y(APTA)] and also by the direct attack of CuII on [Y(APTA)]. The corresponding rate constants kd, k h and kCu have been evaluated as 6.3s–1, 8.4×104 mol–1 dm3 s–1 and 416mol–3 dm3 s–1 respectively. The possible intermediates are discussed in terms of the structure of APTA. The complex-formation rate constants of YIII with APTA3- and HAPTA2- were also obtained.  相似文献   

16.
Summary The aquation ofcis-[(en)2Co(CO2H)2]+ tocis-[(en)2Co(OH2)(CO2H)]2+ is catalysed by Cu2+ and the rate equation, –d[complex]t/dt=(kCu[Cu2+]+kH [H+]) [complex)T is valid at [Cu2+]T=0.01–0.1, I=0.5 and [HClO4]=0.005 mol dm–3. The rate measurements are reported at 30, 35, 40 and 45°C and the rate and activation parameters for the Cu2+ and H+-catalysed paths are: kH(35°C)=(2.44±0.09)×10–2 dm3 mol–1 s–1, H=83±13 kJ mol–1, S=–8±42 JK–1 mol–1, k Cu (35°C)=(3.30±0.09)×10–3 dm3 mol–1 s–1, H=73.2±6.1 kJ mol–1, S=–55±20 JK–1 mol–1. The formate-bridged innersphere binuclear complex,cis-[(en)2Co{(O2CH)2Cu}]3+ may be involved as the catalytically active intermediate in the copper(II)-catalysed path, just as the corresponding H+-bridged species presumed to be present in the acidcatalysed path.  相似文献   

17.
Summary Peroxodisulfate ion readily oxidises CoII-YOH [YOH =N(2-hydroxyethyl)ethylenediaminetriacetate] with the formation of an intermediate complex. The kinetics of the electron-transfer step follow the rate law: Rate = 2kHKH[H+][S2O8]2-[CoII-YOH]/(1 + KH[H+]) where [S2O8]2– is the total peroxodisulfate concentration, kH is the rate constant for the electron-transfer process, and KH is the pre-equilibrium protonation constant. Activation parameters have been evaluated. The intermediate, which was identified spectrophotometrically, slowly rearranges to the quinquedentate species Co(YOH)(H2O). The rate of this rearangement has also been measured.  相似文献   

18.
Iron nitrosyl complexes with general formula [Q4N]2[Fe2(S2O3)2(NO)4] (Q = Me, Et, n-Pr, n-Bu) were synthesized by the exchange reaction of K2[Fe2(S2O3)2(NO)4] with tetraalkylammonium bromides. The molecular and crystal structure of [(CH3)4N]2[Fe2(S2O3)2(NO)4] were studied by X-ray diffraction analysis. The iron atom in the four-membered cycle of the [2Fe–2S] anion is bound to another Fe atom and to two sulfur atoms and is coordinated by two nonequivalent NO groups, each bridging sulfur atom being bound to the SO3group. The structurally equivalent iron atoms are in the state Fe1–(S= 1/2). The Mössbauer spectroscopy method shows that the complexes are diamagnetic due to the strong Fe–Fe bond. It is found that the SO3group provides higher stability of the thiosulfate anion than the anion in Roussin's red salt [Fe2S2(NO)4]2–.  相似文献   

19.
Guo  Yanhe  Ge  Qingchun  Lin  Hai  Lin  Huakuan  Zhu  Shourong 《Transition Metal Chemistry》2003,28(6):668-675
The ligands 1,10-N,N-bis(2-hydroxymethylbenzoyl)-1,4,7,10-tetraazadecane (L1) and 1,11-N,N-bis(2-hydroxymethylbenzoyl)-1,4,8,11-tetraazaundecane (L2) have been synthesized. The stability constants of NiII complexes of ligands L1 and L2 have been studied at 25 °C using pH titrations. The kinetics of general acid (HCl, 0.04–2.34 mol dm–3) or buffer (DEPP or DESPEN, 0.05 mol dm–3, pH 4.83–5.72)-catalyzed dissociation of these NiII complexes have been investigated at 25 °C using a stopped-flow spectrophotometer. The ionic strength of solution was controlled at I = 2.34 mol dm–3 (KCl + HCl) and I = 0.1 mol dm–3 (KNO3, buffer), respectively. The kinetic dissociation of NiII complexes catalyzed by HCl obeys the equilibrium k obs = k 1d + k 2H[H+], whereas in buffer solution the observed rate constant k obs = k d + k 1H[H+]. At pH < 1.5, both the proton-assisted and direct protonation pathways contribute to the rates, whereas solvation is the dominant pathway at pH > 6. In the 4.8–5.7 pH range, the complexes dissociate mainly through a proton-assisted pathway.  相似文献   

20.
The interaction of K(35-Dnb) (35-Dnb=3,5-dinitrobenzoate) with benzo-15-crown-5 (B15C5) in ethanol yields a charge-separated sandwich structured complex [K(B15C5)2]+[35-Dnb(35-DnbH)2] even when equimolar amounts of reactants were used and no external 35-DnbH was added to the reaction mixture. The complex (KC49H51O28N6, FW=1211.1), is monoclinic,P21/c,a=11.063(2),b=10.680(1),c=46.548(8) Å, =91.629(2)0,Z=4,D 0=1.485 g/cm3,D c=1.468 g/cm3, CuK =1.5418 Å, =17.01 cm–1, 2<1300,F(000)=2520,T=298 K. FinalR for the 6618 observed reflections was 0.071. In the sandwich moiety, the K+ is 10-coordinated through all the oxygens of the crown molecules (K+–O, 2.76–3.11 Å). The 35-Dnb anion lies 5.3 Å below the lower crown mean plane and is charge separated with respect to K+ (K+–O>7 Å) but undergoes strong hydrogen bonding (2.59 and 2.49 Å) through each carboxylate oxygen with the carboxylic protons of two separate 35-DnbH molecules. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82014 (52 pages).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号