首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
This paper designs the dynamic output-feedback controller of switched positive systems subject to switching faults using an improved adaptive event-triggering mechanism. An adaptive event-triggering condition is addressed in the form of 1-norm by virtue of the measurable outputs of distributed sensors and the corresponding error. An error-based closed-loop control system whose dynamic variable relies on a state observer is obtained. A multiple copositive Lyapunov function is constructed to deal with the positivity and stability of the systems. The matrix decomposition and linear programming approaches are used to design and compute the controller and observer gains. An improved average dwell time scheme is proposed to handle the switching faults. The contributions of this paper lie in that: (i) An adaptive event-triggering mechanism is established for switched positive systems, (ii) A framework on the fault of switching signal is constructed, and (iii) A dynamic distributed controller is proposed for the considered systems. Finally, two illustrative examples are given to verify the effectiveness of the obtained results.  相似文献   

2.
In this paper we consider model predictive control (MPC) schemes without stabilizing terminal constraints and/or costs for continuous time systems. While the estimates on the required prediction horizon length such that asymptotic stability of the MPC closed loop is guaranteed yield, in general, satisfactory results their applicability is limited due to the fact that the respective proofs assume that the input function can be switched arbitrarily often on compact time intervals. We present a technique which allows to determine a suitable discretization accuracy such that the obtained performance bound is preserved while the control signal is only switched at the sampling instants of the corresponding sampled data system. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
4.
In this paper, we propose a memory state feedback model predictive control (MPC) law for a discrete-time uncertain state delayed system with input constraints. The model uncertainty is assumed to be polytopic, and the delay is assumed to be unknown, but with a known upper bound. We derive a sufficient condition for cost monotonicity in terms of LMI, which can be easily solved by an efficient convex optimization algorithm. A delayed state dependent quadratic function with an estimated delay index is considered for incorporating MPC problem formulation. The MPC problem is formulated to minimize the upper bound of infinite horizon cost that satisfies the sufficient conditions. Therefore, a less conservative sufficient conditions in terms of linear matrix inequality (LMI) can be derived to design a more robust MPC algorithm. A numerical example is included to illustrate the effectiveness of the proposed method.  相似文献   

5.
This paper investigates the problem of event-triggered tracking control for switched networked nonlinear systems with asymmetric time-varying output constraints. To handle the output constraints, an output-dependent generic constraint function is constructed to describe relationship between the output and the performance requirement. Meanwhile, an event-triggering rule is designed to reduce communication frequency between the controller and the actuator, thereby reducing the burden of the network communication. Based on the common Lyapunov function method and event-triggered control strategy, an adaptive control method is designed, which can guarantee that the closed-loop signals are bounded and avoid the Zeno behavior. Different from existing results considering constraints, the proposed scheme not only relaxes the restricted condition of constraint boundaries but also both the cases with and without output constraints can be addressed simultaneously. Furthermore, the stability of the system can be guaranteed by the small-gain technique. Finally, two simulation examples are provided to demonstrate the effectiveness of the proposed scheme.  相似文献   

6.
研究了事件触发机制下混合时滞复值神经网络的状态估计问题.首先基于测量输出设计了事件触发机制,有效降低了估计器更新的频率.在触发机制中引入了等待时间,以此避免了采样中的Zeno现象.运用Lyapunov方法和复值矩阵的性质,建立了估计误差系统全局渐近稳定的充分性判据,并基于线性矩阵不等式技巧给出了复值增益矩阵K的求解算法.最后的数值例子验证了理论成果的正确性和有效性.  相似文献   

7.
In this paper, we propose a new robust model predictive control (MPC) method for time-varying uncertain systems with input constraints. We formulate the problem as a minimization of the worst-case finite-horizon cost function subject to a new sufficient condition for cost monotonicity. The proposed MPC technique uses relaxation matrices to derive a less conservative terminal inequality condition. The relaxation matrices improve feasibility and system performance. The optimization problem is solved by semidefinite programming involving linear matrix inequalities (LMIs). A numerical example shows the effectiveness of the proposed method. The authors thank the associate editor and two anonymous referees for careful reading and useful suggestions.  相似文献   

8.
In this paper, a differential-inclusion-based MPC scheme is developed for the controller design for a discrete time nonlinear Markov jump system with nonhomogeneous transition probability. By adopting a differential-inclusion-based convex model predictive control mechanism, the nonlinear Markov jump system with nonhomogeneous transition probability is enclosed by a set of linear Markov jump systems. In this way, the controller design for the nonlinear Markov jump system can be solved via solving a set of linear Markov jump systems. Two numerical examples with different weighting parameters R are presented to illustrate the applicability of the results obtained.  相似文献   

9.
Model predictive control (MPC) is an optimization-based control framework which is attractive to industry both because it can be practically implemented and it can deal with constraints directly. One of the main drawbacks of MPC is that large MPC horizon times can cause requirements of excessive computational time to solve the quadratic programming (QP) minimization which occurs in the calculation of the controller at each sampling interval. This motivates the study of finding faster ways for computing the QP problem associated with MPC. In this paper, a new nonfeasible active set method is proposed for solving the QP optimization problem that occurs in MPC. This method has the feature that it is typically an order of magnitude faster than traditional methods. This work has been supported by the Canadian NSERC under Grant A4396.  相似文献   

10.
In this article, we propose a robust tube-based MPC formulation for a class of hybrid systems, namely autonomously switched PWA systems, with bounded additive disturbances. The term tube-based refers to those control techniques whose objective is to maintain all possible trajectories of the uncertain system inside a tube which is a set around the nominal (or reference) system trajectory, that is free from disturbances. Common methods in tube-based control systems consider an error dynamical system as the difference between the state of the nominal system and the state of the perturbed system. However, this definition of the error dynamical system leads to a complicated switched affine system for PWA systems. Therefore, we use a new notion of the reference system similar to the nominal system except that the switching between the various modes of the PWA system is driven by the state of the real system. Using this reference system instead of the nominal system leads us to an error dynamical system that can be modeled as a switched linear system. We employ a switched linear controller to stabilize this error system under arbitrary switching. This auxiliary controller forces the states of the uncertain system to remain in a tube confined to the invariant set around the state of the reference system. We add new constraints and tighten some other constraints of the nominal hybrid MPC for the reference system, in order to ensure convergence of the uncertain system and to guarantee robust exponential stability of the closed-loop system.  相似文献   

11.
The problem of stabilization for wireless networked control system (NCS) with packet dropout and time delay is studied in this article. The impulsive control law for the NCS is defined with time delay and impulse. Using a switching model, the network‐induced imperfections can be treated as three switching subsystems. Therein, in the case of packet dropout, the control law use the previous state via the first‐order hold. The impulsive control law is designed using the switched system approach and the average dwell time method. The obtained sufficient conditions which can guarantee the exponential stability of switched system are in the form of linear matrix inequalities. Finally, a numerical example is used to demonstrate the merits and applicabilities of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 291–299, 2016  相似文献   

12.
In this paper, a computationally efficient controller is proposed for the target control problem when the system is modelled by hybrid automata. The design is carried out in two stages. First, we compute off-line the shortest switching path which has the minimum discrete cost from an initial set to the given target set. Next, a controller is derived which successfully drives the system from any given initial state in the initial set to the target set while minimizing a cost function. The model predictive control (MPC) technique is used when the current state is not within a guard set, otherwise the mixed-integer predictive control (MIPC) technique is employed. An on-line, semi-explicit control algorithm is derived by combining these two techniques. When the system is subject to additive bounded disturbance, it is shown that the proposed on-line control algorithm holds if tighter constraints on the original nominal state and controller are imposed. Finally, as an application of the proposed control procedure, the high-speed and energy-saving control problem of the CPU processing is considered.  相似文献   

13.
This article considers the robust regulation problem for a class of constrained linear switched systems with bounded additive disturbances. The proposed solution extends the existing robust tube based model predictive control (RTBMPC) strategy for non-switched linear systems to switched systems. RTBMPC utilizes nominal model predictions, together with tightened sets constraints, to obtain a control policy that guarantees robust stabilization of the dynamic systems in presence of bounded uncertainties. In this work, similar to RTBMPC for non-switched systems, a disturbance rejection proportional controller is used to ensure that the closed loop trajectories of the switched linear system are bounded in a tube centered on the nominal system trajectories. To account for the uncertainty related to all sub-systems, the gain of this controller is chosen to simultaneously stabilize all switching dynamics. The switched system RTBMPC requires an on-line solution of a Mixed Integer Program (MIP), which is computationally expensive. To reduce the complexity of the MIP, a sub-optimal design with respect to the previous formulation is also proposed that uses the notion of a pre-terminal set in addition to the usual terminal set to ensure stability. The RTBMPC design with the pre-terminal set aids in determining the trade-off between the complexity of the control algorithm with the performance of the closed-loop system while ensuring robust stability. Simulation examples, including a Three-tank benchmark case study, are presented to illustrate features of the proposed MPC.  相似文献   

14.
15.
This paper introduces a new approach to robust model predictive control (MPC) based on conservative approximations to semi-infinite optimization using linear matrix inequalities (LMIs). The method applies to problems with convex quadratic costs, linear and convex quadratic constraints, and linear predictive models with bounded uncertainty. If the MPC optimization problem is feasible at the initial control step (the first application of the MPC optimization), it is shown that the MPC optimization problems will be feasible at all future time steps and that the controlled system will be closed-loop stable. The method is illustrated with a solenoid control example. The authors thank the anonymous reviewers for suggestions that improved the presentation of this work. The work was supported in part by the EPRI/DoD Complex Interactive Networks/Systems Initiative under Contract EPRI-W08333-05 and by the US Army Research Office Contract DAAD19-01-1-0485.  相似文献   

16.
This paper focuses on the fault estimation problem for switched systems with partially unknown nonlinear dynamics, actuator and sensor faults, simultaneously. The fault estimation observers are constructed, in which the observer dimension is not fixed and can be selected in a certain range. Both the disturbance decoupling and disturbance attenuation are considered, where the unknown nonlinear dynamics can be decoupled and the effect of modeling error and measurement disturbance is attenuated. Based on the average dwell time and the piecewise Lyapunov function, the observer parameter matrices can be calculated by solving LMIs and matrix equations. Finally, two examples are listed to verify the proposed fault estimation approach.  相似文献   

17.
A unique method of coupling computational fluid dynamics (CFD) to model predictive control (MPC) for controlling melt temperature in plastic injection molding is presented. The methodology is based on using CFD to generate, via open-loop testing, a temperature and input dependent system model for multi-variable control of a three-heater barrel on an injection molding machine. Results clearly show the benefit of temperature and input dependent system models for MPC control, and that CFD can be used to dramatically reduce the time associated with open-loop testing through physical experiments.  相似文献   

18.
Moving Target Defense (MTD) prevents adversaries from being able to predict the effect of their attacks by adding uncertainty in the state of a system during runtime. In this paper, we present an MTD algorithm that randomly changes the availability of the sensor data, so that it is difficult for adversaries to tailor stealthy attacks while, at the same time, minimizing the impact of false-data injection attacks. Using tools from the design of state estimators, namely, observers, and switched systems, we formulate an optimization problem to find the probability of the switching signals that increase the visibility of stealthy attacks while decreasing the deviation caused by false data injection attacks. We show that the proposed MTD algorithm can be designed to guarantee the stability of the closed-loop system with desired performance. In addition, we formulate an optimization problem for the design of the parameters so as to minimize the impact of the attacks. The results are illustrated in two case studies, one about a generic linear time-invariant system and another about a vehicular platooning problem.  相似文献   

19.
This article is devoted to the problem of robust stabilization of uncertain nonlinear switched systems with canonical structure. It is assumed that the constant parameters of the subsystems are unknown and cannot be adopted in the controller design. In addition, the dynamics of the subsystems are perturbed via modeling errors and external disturbances. The effects of unknown actuator saturation are compensated via proper adaptive control signals. The derived controller is based on the terminal sliding mode theory and does not need any prior knowledge about the bounds of the lumped uncertain terms. It is proved that once the system states reach the prescribed sliding manifold in a finite time interval, the whole system becomes insensitive to both the lumped uncertainties and the switching dynamics of the system. The common assumption of having known quadratic Lyapunov functions for the subsystems is relaxed and the derived adaptive approach does not force any limitation on the switching signal of the system. Subsequently, non-conservative conditions are provided to guarantee the global finite time bounded stability of the equilibrium state for the overall uncertain nonlinear switched system under arbitrary switching signals. A numerical computer simulation demonstrates the robust performance of the proposed controller.  相似文献   

20.
This paper deals with the problem of robust H state feedback stabilization for uncertain switched linear systems with state delay. The system under consideration involves time delay in the state, parameter uncertainties and nonlinear uncertainties. The parameter uncertainties are norm-bounded time-varying uncertainties which enter all the state matrices. The nonlinear uncertainties meet with the linear growth condition. In addition, the impulsive behavior is introduced into the given switched system, which results a novel class of hybrid and switched systems called switched impulsive control systems. Using the switched Lyapunov function approach, some sufficient conditions are developed to ensure the globally robust asymptotic stability and robust H disturbance attenuation performance in terms of certain linear matrix inequalities (LMIs). Not only the robustly stabilizing state feedback H controller and impulsive controller, but also the stabilizing switching law can be constructed by using the corresponding feasible solution to the LMIs. Finally, the effectiveness of the algorithms is illustrated with an example.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号