首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pd supported on TiO2-Al2O3 binary oxides prepared by coprecipitation method has been investigated for the total oxidation of methane. All Pd/TiO2-Al2O3 catalysts show higher activity than Pd/Al2O3 and Pd/TiO2. Among them, Pd/2Ti-3Al with a Ti/Al ratio of 2 to 3 has a T90% of 395 ℃ at a gas hourly mass velocity of 33000 mL/(h*g), which is at least 50 ℃ lower than that of Pd supported on single metal oxide Al2O3 or TiO2. The results of TPR and ^180-isotope exchange experiments demonstrated that the excellent activity of Pd/2Ti-3Al was due to its high oxygen mobility and moderate reducibility, which is in accordance with our previous work, XPS results indicated that the dispersion of Pd was not the key factor to influence the catalytic activity.  相似文献   

2.
The Ti–6Al–4V alloy is an important aviation material, but has a poor resistance to slide wear. Laser cladding of the Al3Ti + Ni/Cr/C + TiB2/Al2O3 + SiC/nano‐CeO2 preplaced powders on the Ti–6Al–4V alloy can form the Ti3Al/γ‐Ni matrix composite coating, which improves the wear resistance of the substrate. In this study, the Al3Ti + Ni/Cr/C + TiB2/Al2O3 + SiC/nano‐CeO2 laser‐cladded coating was researched by means of X‐ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The experimental results indicate that under the action of SiC/nano‐CeO2, this composite coating exhibited a fine microstructure. Furthermore, the proper content of nano‐CeO2 decreased the crack tendency. The results above indicated that, it is feasible to improve the tribological property of the Al3Ti + Ni/Cr/C + TiB2/Al2O3 laser‐cladded coating by adding of SiC/nano‐CeO2. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
FeOx, TiO2, and Fe–Ti–Ox catalysts were synthesized and used in the catalytic hydrolysis of hydrogen cyanide (HCN). Nearly 100% HCN conversion was achieved at 250 °C over the Fe–Ti–Ox catalyst. TiO2 rutile was detected over TiO2, but not over Fe–Ti–Ox, which suggested that the interaction between Fe and Ti species could inhibit the TiO2 phase transition. Furthermore, the interaction between Fe and Ti species over Fe–Ti–Ox could promote the selectivity of NH3 and CO. The mechanism of hydrolysis of HCN over FeOx, TiO2, and Fe–Ti–Ox can be given as follows: HCN + H2O → methanamide → ammonium formate → formic acid → H2O + CO.  相似文献   

4.
Poly(vinyl pyrrolidone) (PVP)/[Ti(SO4)2 + Al(NO3)3] composite nanobelts were prepared via electrospinning technology, and TiO2/Al2O3 nanobelts were fabricated by calcination of the prepared composite nanobelts. The samples were characterized by thermogravimetric-differential thermal analysis (TG-DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD results show that the composite nanobelts were amorphous in structure, and pure phase TiO2/Al2O3 nanobelts were obtained by calcination of the relevant composite nanobelts at 950°C for 8 h. SEM analysis indicates that the surface of as-prepared composite nanobelts was smooth, the widths of the composite fibers were in narrow range, and the mean width was ca. 8.9 ± 2.1 μm, thickness was about 255 nm, and there is no cross-linking among nanobelts. The width of TiO2/Al2O3 nanobelts was ca. 1.3 ± 0.1 μm and the thickness was about 105 nm. TG-DTA analysis reveals that the N,N-dimethylformamide (DMF), organic compounds and inorganic salts in the composite nanobelts were decomposed and volatilized totally, and the weight of the sample kept constant when sintering temperature was above 900°C, and the total weight loss percentage was 81%. FTIR analysis manifests that crystalline TiO2/Al2O3 nanobelts were formed at 950°C. The possible formation mechanism of the TiO2/Al2O3 nanobelts was preliminarily discussed.  相似文献   

5.

High-chromium vanadium–titanium magnetite (HCVTM) is a good valuable resource with high iron content in the form of complex iron ore which contains various valuable metal elements such as iron, vanadium, titanium, chromium. Direct reduction of HCVTM is studied based on thermodynamic analysis. Combined TG experimental verification and equilibrium calculation model was used to analyze the reaction sequence and equilibrium amount in this paper. The contents in HCVTM reduction system are simplified as 18 kinds of chemical compositions. Reductions of Fe3O4 and FeO·TiO2 are the main reduction reactions and are mainly reduced by C. The reduction reaction sequence of FeO·TiO2 is FeO·TiO2, TiO2, TiC, and Ti; the reduction reaction sequence of Fe3O4 is Fe3O4, FeO, and Fe. The minimum reduction temperature of HCVTM is 860 °C. The reduction of Cr is difficult to implement, and the minimum reduction temperature of V is above 700 °C. The gas phase in this system is mainly CO when the temperature is above 1000 °C. CO partial pressure curve of gasification reaction is in the shape of ‘S’ with increase of temperature. When the temperature is 1350 °C, C/O is 1.0 and reduction time is 30 min, HCVTM can be reduced thoroughly and the reduction degree can reach to 0.98. When C/O is lower than 1.0, FeTi2O5 is the reduction intermediate products from FeO·TiO2. When C/O is 1.0, diffraction peaks of Fe3O4 and FeO·TiO2 disappear, and they are reduced to Fe and TiO2.

  相似文献   

6.
The Er3+:Y3Al5O12, as an upconversion luminescence agent which is able to transform the visible part of the solar light to ultraviolet light, was prepared by nitrate-citrate sol-gel method. A novel solar light photocatalyst, Er3+:Y3Al5O12/TiO2-CeO2 composite was synthesized using ultrasonic treatment. The X-ray diffraction (XRD) and scanning election microscopy (SEM) were used to characterize the structural morphology of the Er3+:Y3Al5O12/TiO2-CeO2 composite. In order to evaluate the solar light photocatalytic activity of Er3+:Y3Al5O12/TiO2-CeO2 composite, the Azo Fuchsine dye was used as a model organic pollutant. The progress of the degradation reaction was monitored by UV-Vis spectroscopy and ion chromatography. The key influences on the solar light photocatalytic activity of Er3+:Y3Al5O12/TiO2-CeO2 were studied, such as Ti/Ce molar ratio, heat-treatment temperature and heat-treatment time. Otherwise, the effects of initial dye concentration, Er3+:Y3Al5O12/TiO2-CeO2 amount, solar light irradiation time and the nature of the dye on the solar light photocatalytic degradation process were investigated. It was found that the solar light photocatalytic activity of Er3+:Y3Al5O12/TiO2-CeO2 composite was superior to Er3+:Y3Al5O12/TiO2 and Er3+:Y3Al5O12/CeO2 powder in the similar conditions.  相似文献   

7.
Contributions to the study of Inorganic Nonstoichiometric Compounds. X. Thermal Behaviour of Metastable H-Ta2O5 Variants in the system Ta2O5- TiO2 Quenched samples of the high temperature form of Ta2O5 with Ti contents of 0 until 6.7 at-% (ΣMe = 100%) were investigated in the metastable region from 20 to 1400°C with a continuously registrating guinier-camera which was equiped with a special sample heating device: There are 3 roomtemperature-phases: H(triclinic), H1(monoclinic), H2(monoclinic), and 3 high temperature phases: H′ (triclinic), H2′ (monoclinic) and H3(tetragonal). In the regions between H and H1 as well as H1 and H2 diagrams of both phases could be observed together on the X-ray photograph; these regions disappeare at temperatures higher than approximately 310°C. With increasing temperatures the following phase transitions occure: H → H′ → H2′ → H3, H1 → H → H2′ → H3, H2 → H1 → H2′ → H3, H2 → H2′ → H3. Electronmicroscopic investigations of a sample with 6.7 at-% Ti gave no indication to the existence of “shear planes”. By means of the present results various possibilities of the incorporation of Ti in the H-Ta2O5 lattice are discussed.  相似文献   

8.
钛、铝和玻璃上TiO2光催化膜的失活研究   总被引:2,自引:0,他引:2  
采用浸渍提拉法,在平行条件下制备了钛、铝和玻璃载体上的TiO2膜TiO2 / Ti、TiO2 / Al和TiO2 / G,利用X射线光电子能谱(XPS)、原子力显微镜(AFM)和光催化降解实验等手段对膜样品进行了表征和活性评价。实验结果表明,在铝和玻璃基材上制膜时发生了显著的基材元素溢出,使各膜样品的化学组成不同,同时TiO2粒子和膜表面形貌也因前驱物烧结行为不同而差异较大。TiO2相似文献   

9.
Ignition delay times of acetonitrile (CH3CN) in mixtures containing acetonitrile and oxygen diluted in argon were studied behind reflected shock waves. The temperature range covered was 1420–1750 K at overall concentrations behind the reflected shock wave ranging from 2 to 4×10−5 mol/cm3. Over this temperature and concentration range the ignition delay times varied by approximately one order of magnitude, ranging from ca. 100 μs to slightly above 1 ms. From a total of some 70 tests the following correlation for the ignition delay times was derived: tign=9.77×10−12 exp(41.7×103/RT)×{[CH3CN]0.12[O2]−0.76[Ar]0.34} s, where concentrations are expressed in units of mol/cm3 and R is expressed in units of cal/(K mol). The ignition delay times were modeled by a reaction scheme containing 36 species and 111 elementary reactions. Good agreement between measured and calculated ignition delay times was obtained. A least-squares analysis of 60 computed ignition delay times from six different groups of initial conditions gave the following temperature and concentration dependence: E=46.2×103 cal/mol, β=0.43, β=−1.18, and βAr=0.18. The ignition process is initiated by H-atom ejection from acetonitrile. The addition of oxygen atoms to the system from the dissociation of molecular oxygen and from the reaction CH3CN+O2 → HO2·+CH2CN·is negligible. In view of the relatively high concentration of methyl radicals obtained in the reaction CH3CN+H → CH3+HCN, the branching step CH3+O2 → CH3O+O plays a more important role than the parallel step H+O2→ OH+O. A discussion of the mechanism in view of the sensitivity analysis is presented. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 839–849, 1997  相似文献   

10.
The Er3+:Y3Al5O12 as an upconversion luminescence agent, which can transform visible light into ultraviolet light, was synthesized by nitrate?Ccitrate acid and calcined method. Then, a novel photocatalyst, Er3+:Y3Al5O12/TiO2?CZrO2, was prepared using ultrasonic dispersion and liquid boiling method. The samples were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). In succession, the degradation process of organic dye was monitored by UV?CVis spectrum and ion chromatography for verifying the photocatalytic activity of Er3+:Y3Al5O12/TiO2?CZrO2. The influences on its photocatalytic activity such as Ti/Zr molar ratio, heat-treated temperature, and time were studied. In addition, the influences of initial concentration, Er3+:Y3Al5O12/TiO2?CZrO2 amount, solar light irradiation time, and organic dye category on the photocatalytic degradation efficiency were also investigated. It was found the photocatalytic activity of Er3+:Y3Al5O12/TiO2?CZrO2 was superior to Er3+:Y3Al5O12/TiO2 and Er3+:Y3Al5O12/ZrO2. Therefore, the Er3+:Y3Al5O12/TiO2?CZrO2 is a useful photocatalytic material for the wastewater treatment duo to efficient utilization of solar light.  相似文献   

11.
Ti-Al-O layers were deposited on Si-<100> wafers at 500 °C by means of reactive magnetron sputtering ion plating (R-MSIP). An Al-target was sputtered in rf-mode and a Ti-target in dc-mode simultaneously by an oxygen/argon plasma. The influence of the Al- and Ti-sputter powers on composition, structure, and morphology of the Ti-Al-O layers and the binding states of the components were investigated. The analysis with EPMA, XPS, AES and TEM yielded the following results: Ti-Al-O coatings with different Ti, Al, and O contents in the range of TiO2 to Al2O3 were grown. TEM structure analysis revealed: the pure TiO2 film consisted of the tetragonal phases rutile and anatase; the two structures were found in the titanium-rich Ti-Al-O film, too, but with significant smaller lattice constants. The aluminium-rich Ti-Al-O film displayed the same cubic structure of γ-Al2O3 as determined for the pure Al2O3 film, but the lattice constant is significant lower. Evaluation of the TEM pattern of the film with a Ti/Al ratio of 0.8 indicates a hexagonal structure with lattice constants similar to those of κ′-Al2O3. All films are nanocrystalline and not textured. Received: 24 June 1996 / Revised: 27 December 1996 / Accepted: 4 January 1997  相似文献   

12.
Titanium carbide ultrafine powders were prepared from tetrabutyl titanate and sucrose by sol–gel and microwave carbothermal reduction. The influences of reaction temperature and molar ratio of Ti to C on the synthesis of titanium carbide were studied. The results show that excess amount of carbon plays a positive effect on the carbothermal reduction of TiO2 at low temperature. The inceptive carbothermal reduction temperature of TiO2 and formation of titanium oxycarbide was below 900 °C, and pure TiC can be prepared at 1,200 °C, which was considerably lower compared to that by conventional carbothermal reduction using a mixture of TiO2 and carbon powders as raw materials. The morphology and particle size of synthesized TiC powder were examined by field emission-scanning electron microscopy (FE-SEM) and the quantities of the phases of the powders were analyzed by Rietveld refinement method, the particle sizes of the TiC powders synthesized at 1,300 °C distribute over 0.1–0.5 μm.  相似文献   

13.
The co-precipitation behaviour of a simulated Al2(SO4)3-TiOSO4-Na2SiO3 solution that imitated the lixivium of Ti-bearing blast furnace slag (Ti-slag) leached by sulphuric acid was investigated in this study. Various chemical analyses were employed to study the selective precipitation of multiple target components. Based on the high-added-value applications of Ti-slag, a new method was developed to prepare aluminium titanate composites from titanium-containing silicates. The findings demonstrate that the onsets of Ti and Al precipitation occur at pH values of 3.5 and 5.0, respectively, followed by Si precipitation. The particle sizes of the co-precipitates were greatly influenced by the precipitants, pH and the initial Al/Ti mole ratio. The results also show that the precipitation ratio of Ti, Al and Si generally increases with the pH and temperature, regardless of the Al/Ti mole ratio. The Si-O-Al, Ti-O-Al, and Ti-O-Si bonds that were formed were dependent on the pH and the initial Al/Ti mole ratio. There was a synthesis path for β-Al2TiO5 (AT) from the solid-state reaction between rutile and α-Al2O3 at 1362.5°C. The AT composites were successfully prepared by sintering the co-precipitates at 1450°C, which exhibited good thermal stability as estimated by the XRD measurements of the sample annealed at 1200°C for 4 hours.  相似文献   

14.
In this study, an aluminum (Al) foil used for lithium ion battery packaging film was treated with titanium (Ti)/zirconium (Zr) solution containing hexafluorotitanic acid and hexafluorozirconic acid using tannic acid as a colorant and metavanadate as an accelerator, respectively, and a golden conversion coating was successfully deposited on the surface of Al foil. The morphology and composition of the coating were characterized by scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, and the hydrophilicity was assessed by contact angle measurement. The effect of Ti/Zr treatment on the adhesion properties of Al foil was evaluated by T-peeling test and compared with that of traditional chromate-phosphate treatment. The results show that tannic acid contributes to the formation of the golden coating, and metavanadate accelerates the formation of the conversion coating. The results also indicate that the Ti/Zr-based conversion coating is mainly composed of Al2O3, Al (OH)3, AlF3, TiO2/ZrO2, NH4VO3, and V2O5. The Ti/Zr treatment cannot only improve the heat-sealing strength, but also the T-peeling strength by approximately 12 times compared with that of untreated Al foil. Thus, Ti/Zr treatment has the potential to replace the traditional chromate conversion treatment.  相似文献   

15.
Single phase cubic spinel of the composition Mn1.5Al1.5O4 is synthesized. Its crystal structure refinement shows that 0.4Mn+0.6Al are in the octahedral sites and 0.7Mn+0.3Al are in the tetrahedral sites. High temperature X-ray diffraction is used to analyze Mn1.5Al1.5O4 behavior during heating and cooling in air. In a temperature range of 600°C to 700°C, initial spinel splits into layers, and the sample represents a twophase system: cubic spinel Mn0.4Al2.4O4 and a phase based on β-Mn3O4. Above 900°C the sample again turns into single phase cubic spinel. The role of oxidizing processes in the decomposition of Mn1.5Al1.5O4 caused by oxygenation and partial oxidation of Mn2+ to Mn3+ is shown. A scheme of structural transformations of manganese aluminum spinel during heating from room temperature and cooling from 950°C is proposed.  相似文献   

16.
It has been found that the photocatalytic activity of TiO2 toward the decomposition of gaseous benzene can be greatly enhanced by loading TiO2 on the surface of SrAl2O4: Eu2+, Dy3+ using sol–gel technology. The prepared photocatalyst was characterized by BET, XRD, and XPS analyses. XRD results reveal that the peaks of titania in either rutile or anatase form are not detected by XRD in the 2θ region from 20° to 50°. The binding energy values of Ti 2p of pure TiO2 are 458.90 and 464.60 eV, while for TiO2/SrAl2O4: Eu2+, Dy3+, the binding energy values of Ti 2p are 458.50 and 464.20 eV. The results indicate that the optimum loading of TiO2 is 1 wt% and TiO2/SrAl2O4: Eu2+, Dy3+ (1 wt%) demonstrates 1.4 times the photocatalytic activity of that of pure TiO2, but the underlying mechanism of SrAl2O4: Eu2+, Dy3+ in the photocatalytic reaction remains to be unraveled.  相似文献   

17.
Fe–TiO2 nanoparticles with Fe concentration from 0.24 to 5 wt % were synthesized in a Al2O3 matrix through multiple impregnations from organic solutions of Ti n-butoxide and Fe acetylacetonate. Microstructure, morphology and magnetic properties of the composites were studied using X-ray analysis, transmission electron microscopy, energy-dispersive analysis, Mössbauer spectroscopy and magnetic susceptibility. It was shown that the deposition of the solution with low concentration of Ti n-butoxide leads to the formation of mostly extensive Fe–TiO2 films with a small fraction of individual Fe–TiO2 nanoparticles. On the contrary, the increase of Ti n-butoxide concentration results in the formation of a great number of individual Fe–TiO2 nanoparticles on Al2O3. The size of these particles increases from 2–3 nm to 5–8 nm with the increase of Fe content in the samples from 0.24 to 1.0 (wt %). Mössbauer spectroscopy revealed two types of magnetic ions. The first type of paramagnetic Fe3+ demonstrate spin–lattice relaxation properties while another one substitutes Ti4+ in the TiO2 structure thus forming Fe–TiO2 stabilized particles in the matrix. According to the magnetic data antiferromagnetic and ferromagnetic types of exchange spin coupling occur in Fe–TiO2/Al2O3 composites. The increase of Fe concentration in the composites from 1 to 5 wt % results in the narrowing of the TiO2 band gap from 3.2 to 2.7 eV and shifting the absorption edge in visual spectrum from 350–400 to 450–500 nm.  相似文献   

18.
The present paper mainly studied the phase formation and reaction pathway of the Al–Ti–Si system in detail by thermal analysis combined with XRD and SEM observations. The phase formation sequence in Al–Ti–Si system from starting mixtures to final products with increasing temperature can be described as following: Al(l) + Ti(s) + Si(s) → (Al–Si)(l) + Ti(s) + Si(s) → Ti(Al,Si)3(s) + Si(s)Ti5(Si,Al)3 + Al(l). More importantly, the solubility of Si in Ti(Al,Si)3 decreased gradually while that of Al in Ti5(Si,Al)3 increased with temperature increasing, suggesting the transportation of Si atoms from intermediate aluminides Ti(Al,Si)3 to final stable silicides Ti5(Si,Al)3 and hence further confirming the formation of Ti5(Si,Al)3 at the expense of Ti(Al,Si)3.  相似文献   

19.
Reaction of Quartz Glass with Al2Cl6,g and with Al,f + Al2Cl6,g The attack of quartz glass by Al2Cl6,g at temperatures ≧ 300°C results in the formation of SiCl4,g. At low temperature the oxygen appears as gaseous oxide chloride (e. g. Al4OCl10…); above 300°C crystalline AlOCl is observed, whereas at more elevated temperatures Al2O3 is formed. With Al + Al2Cl6 (1 atm, 20°C) at 400/350°C thin silicon foils with metallic luster deposit on the quartz wall. Discussion of the experimental evidence leads to the suggestion that the reduction of SiCl4 — formed initially by attack of the quartz vessel — proceeds by reaction with Al2Cl4,g.  相似文献   

20.
The oxidation behavior of cubic Ti1-xAlxN films was improved by decreasing the Ti/Al ratio from 50/50 in the direction of the phase transition between cubic and hexagonal structure. Metastable, polycrystalline, single-phase Ti1-xAlxN films were deposited on high speed steel (HSS) substrates by reactive magnetron sputtering ion plating (MSIP). The composition of the bulk was determined by electron probe microanalysis (EPMA), the crystallographic structure by thin film X-ray diffraction (XRD). A Ti1-xAlxN film with a Ti/Al atomic ratio of 38/62 was deposited in cubic NaCl structure, whereas a further decrease of the Ti/Al ratio down to 27/73 led to a two-phase film with both cubic and hexagonal constituents. The Ti0.38Al0.62N film was oxidized in synthetic air for 1 h at 800?°C. The oxidic overlayer was analyzed by X-ray photoelectron spectroscopy (XPS) sputter depth profiling, EPMA crater edge linescan analysis, and secondary neutrals mass spectroscopy (SNMS). Scanning electron microscopy (SEM) micrographs of the cross sectional fracture were taken for morphological examination. With higher Ti content, the Ti1-xAlxN formed a TiO2-x rich sublayer beneath an Al2O3 rich toplayer, whereas the oxide layer on the Ti0.38Al0.62N film consisted of pure Al2O3. The thickness of the oxide layer was determined to 60–80 nm, about a quarter of the oxide layer thickness detected on Ti0.5Al0.5N films. The absence of a TiO2-x sublayer was also confirmed by XRD. The results show a distinct improvement of the oxidation resistance of cubic Ti1-xAlxN films by increasing the Al content from x = 0.5 to 0.62, whereas a further increase leads to the hexagonal structure, which is less suitable for tribological applications due to its tendency to form cracks during oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号