首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A triethyleneglycol (TEG) chain, a linear peptide, and a cyclic peptide labeled with 7‐methoxycoumarin‐3‐carboxylic acid (MC) and 7‐diethylaminocoumarin‐3‐carboxylic acid (DAC) were used to thoroughly study Förster resonance energy transfer (FRET) in inclusion complexes. 1H NMR evidence was given for the formation of a 1:1 inclusion complex between β‐cyclodextrin (β‐CD) and the fluorophore moieties of model compounds. The binding constant was 20 times higher for DAC than for MC derivatives. Molecular modeling provided additional information. The UV/Vis absorption and fluorescence properties were studied and the energy transfer process was quantified. Fluorescence quenching was particularly strong for the peptide derivatives. The presence of β‐CDs reduced the FRET efficiency slightly. Dye‐labeled peptide derivatives can thus be used to form inclusion complexes with β‐CDs and retain most of their FRET properties. This paves the way for their subsequent use in analytical devices that are designed to measure the activity of matrix metalloproteinases.  相似文献   

2.
M-DNA (a metal complex of DNA with millimolar concentrations of Zn2+, Co2+, or Ni2+ and basic pH) has been proposed to undergo electron transfer over long distances along the helix and has generated interest as a potential building block for nanoelectronics. We show that DNA aggregates form under solvent conditions favorable for M-DNA (millimolar zinc and pH = 8.6) by fluorescence correlation spectroscopy. We have performed steady-state F?rster resonance energy transfer (FRET) experiments with DNA oligomers conjugated with 6-carboxyfluorescein and tetramethylrhodamine to the opposite ends of double-stranded DNA (dsDNA) molecules. Enhanced acceptor emission is observed for distances larger than expected for identical DNA molecules with no zinc. To avoid intermolecular FRET, the fluorescently labeled dsDNA is diluted with a 100-fold excess of unlabeled dsDNA. The intramolecular FRET efficiency increases 25-fold for a 30-mer doubly labeled duplex DNA molecule upon addition of millimolar concentrations of zinc ions. Without zinc, this oligomer has less than 1% FRET efficiency. This dramatic increase in the FRET efficiency points to either significant changes in the F?rster radius or fraying of the ends of the DNA helices. The latter hypothesis is supported by our experiments with a 9-mer that show dissociation of the duplex by zinc ions.  相似文献   

3.
We report measurements of fluorescence resonance energy transfer (FRET) for glucose sensing in an established concanavalin A–dextran affinity system using frequency‐domain lifetime spectroscopy. A dextran (MW 2000000) labeled with a small fluorescent donor molecule, Alexa Fluor 568, was used to competitively bind to a sugar‐binding protein, concanavalin A, labeled with acceptor molecule, Alexa Fluor 647, in the presence of glucose. The FRET‐quenching kinetics of the donor were analyzed from frequency‐domain measurements as a function of both glucose and acceptor‐protein concentrations using a Förster‐type decay kinetics model. The results show that the frequency‐domain measurements and donor decay kinetics can quantitatively indicate changes in the competitive binding of 0.09 μM dextran to labeled concanavalin A at a solution concentration of 10.67 μM in the presence of glucose at concentrations ranging from 0 to 224 mg/dL.  相似文献   

4.
Luminescent europium complexes are used in a broad range of applications as a result of their particular emissive properties. The synthesis and application of bright, highly water‐soluble, and negatively charged sulfonic‐ or carboxylic acid derivatives of para‐substituted aryl–alkynyl triazacyclononane complexes are described. Introduction of the charged solubilizing moieties suppresses cellular uptake or adsorption to living cells making them applicable for labeling and performing assays on membrane receptors. These europium complexes are applied to monitor fluorescent ligand binding on cell‐surface proteins with time‐resolved Förster resonance energy transfer (TR‐FRET) assays in plate‐based format and using TR‐FRET microscopy.  相似文献   

5.
Single‐molecule fluorescence resonance energy transfer (sm‐FRET) has become a widely used tool to reveal dynamic processes and molecule mechanisms hidden under ensemble measurements. However, the upper limit of fluorescent species used in sm‐FRET is still orders of magnitude lower than the association affinity of many biological processes under physiological conditions. Herein, we introduce single‐molecule photoactivation FRET (sm‐PAFRET), a general approach to break the concentration barrier by using photoactivatable fluorophores as donors. We demonstrate sm‐PAFRET by capturing transient FRET states and revealing new reaction pathways during translation using μm fluorophore labeled species, which is 2–3 orders of magnitude higher than commonly used in sm‐FRET measurements. sm‐PAFRET serves as an easy‐to‐implement tool to lift the concentration barrier and discover new molecular dynamic processes and mechanisms under physiological concentrations.  相似文献   

6.
Luminescent europium complexes are used in a broad range of applications as a result of their particular emissive properties. The synthesis and application of bright, highly water‐soluble, and negatively charged sulfonic‐ or carboxylic acid derivatives of para‐substituted aryl–alkynyl triazacyclononane complexes are described. Introduction of the charged solubilizing moieties suppresses cellular uptake or adsorption to living cells making them applicable for labeling and performing assays on membrane receptors. These europium complexes are applied to monitor fluorescent ligand binding on cell‐surface proteins with time‐resolved Förster resonance energy transfer (TR‐FRET) assays in plate‐based format and using TR‐FRET microscopy.  相似文献   

7.
A red–green–blue (RGB) trichromophoric fluorescent organic nanoparticle exhibiting multi‐colour emission was constructed; the blue‐emitting cationic oligofluorene nanoparticle acted as an energy‐donor scaffold to undergo fluorescence resonance energy transfer (FRET) to a red‐emitting dye embedded in the nanoparticle (interior FRET) and to a green‐emitting dye adsorbed on the surface through electrostatic interactions (exterior FRET). Each FRET event occurs independently and is free from sequential FRET, thus the resultant dual‐FRET system exhibits multi‐colour emission, including white, in aqueous solution and film state. A characteristic white‐emissive nanoparticle showed visible responses upon perturbation of the exterior FRET efficiency by acceptor displacement, leading to highly sensitive responses toward polyanions in a ratiometric manner. Specifically, our system exhibits high sensitivity toward heparin with an extremely low detection limit.  相似文献   

8.
We measured absorption and emission spectra, fluorescence quantum yield, anisotropy, fluorescence resonance energy transfer (FRET), and melting temperature to characterize fluorescein- and tetramethylrhodamine (TMR)-labeled oligonucleotides in solution and when hybridized to a common DNA template. Upon hybridization to the template, both the absorption and emission spectra of TMR-labeled duplexes exhibited a shift with respect to those of labeled oligonucleotides, depending on the location of the TMR on the oligonucleotide. Measurements of quantum yield, anisotropy, and melting temperature indicated that TMR interacted with nucleotides within the duplexes in the order (T1>T5>T11, T16) that the oligonucleotide with TMR labeled at the 5' end (T1) is stronger than that labeled at position 5 from the 5' end (T5), which is also stronger than those labeled at the positions, 11 and 16, from the 5' end (T11, T16). In the case of the duplex formed between T1 and the template, fluorescence quenching was observed, which is attributed to the interaction between the dye molecule and guanosines located at the single-stranded portion of the template. A two-state model was suggested to describe the conformational states of TMR in the duplex. The melting temperatures of the four FRET complexes show the same pattern as those of TMR-labeled duplexes. We infer that the interactions between TMR and guanosine persist in the FRET complexes. This interaction may bring the donor and the acceptor molecules closely together, which could cause interaction between the two dye molecules shown in absorbance measurements of the FRET complexes.  相似文献   

9.
A series of dinuclear ruthenium(II) complexes were synthesised, and the complexes were determined to be new highly selective compounds for binding to telomeric G‐quadruplex DNA. The interactions of these complexes with telomeric G‐quadruplex DNA were studied by using circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assays, isothermal titration calorimetry (ITC) and molecular modelling. The results showed that the complexes 1 , 2 and 4 induced and stabilised the formation of antiparallel G‐quadruplexes of telomeric DNA in the absence of salt or in the presence of 100 mM K+‐containing buffer. Furthermore, complexes 1 and 2 strongly bind to and effectively stabilise the telomeric G‐quadruplex structure and have significant selectivity for G‐quadruplex over duplex DNA. In comparison, complex 3 had a much lesser effect on the G‐quadruplex, suggesting that possession of a suitably sized plane for good π–π stacking with the G‐quadruplets is essential for the interaction of the dinuclear ruthenium(II) complexes with the G‐quadruplex. Moreover, telomerase inhibition by the four complexes and their cellular effects were studied, and complex 1 was determined to be the most promising inhibitor of both telomerase and HeLa cell proliferation.  相似文献   

10.
A separation‐free single‐base extension (SBE) assay utilizing fluorescence resonance energy transfer (FRET) was developed for rapid and convenient interrogation of DNA methylation status at specific cytosine and guanine dinucleotide sites. In this assay, the SBE was performed in a tube using an allele‐specific oligonucleotide primer (i.e., extension primer) labeled with Cy3 as a FRET donor fluorophore at the 5′‐end, a nucleotide terminator (dideoxynucleotide triphosphate) labeled with Cy5 as a FRET acceptor, a PCR amplicon derived from bisulfite‐converted genomic DNA, and a DNA polymerase. A single base‐extended primer (i.e., SBE product) that was 5′‐Cy3‐ and 3′‐Cy5‐tagged was formed by incorporation of the Cy5‐labeled terminator into the 3′‐end of the extension primer, but only if the terminator added was complementary to the target nucleotide. The resulting SBE product brought the Cy3 donor and the Cy5 acceptor into close proximity. Illumination of the Cy3 donor resulted in successful FRET and excitation of the Cy5 acceptor, generating fluorescence emission from the acceptor. The capacity of the developed assay to discriminate as low as 10% methylation from a mixture of methylated and unmethylated DNA was demonstrated at multiple cytosine and guanine dinucleotide sites.  相似文献   

11.
We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)‐sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET‐conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)‐enhanced emission of 3 and 4 in lysosomes. It was further shown using two‐color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino‐functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells.  相似文献   

12.
A cationic water‐soluble conjugated polyelectrolyte, poly[9,9‐bis(6′′‐(N,N,N‐trimethylammonium)hexyl)fluorene‐co‐alt‐2,5‐bis(6′‐(N,N,N‐trimethylammonium)hexyloxyphenylene) tetrabromide], was synthesized. Fluorescence resonant energy transfer (FRET) experiments between the polymer and fluorescein‐labeled single‐stranded DNA (ssDNA‐Fl) were conducted in aqueous buffer and THF/buffer mixtures. Weak fluorescence emission in aqueous buffer was observed upon excitation of the polymer, whereas addition of THF turned on the fluorescence. Fluorescence self‐quenching of ssDNA‐Fl in the ssDNA‐Fl/polymer complexes as well as electron transfer from the polymer to fluorescein may account for the low fluorescence emission in buffer. The improved sensitization of fluorescence by the polymer observed in THF/buffer could be attributed to the weaker binding between the polymer and ssDNA‐Fl and a decrease in dielectric constant of the solvent mixture, which disfavors electron transfer. THF‐assisted signal sensitization was also observed for the polymer and fluorescein‐labeled double‐stranded DNA (dsDNA‐Fl). These results indicate that the use of cosolvent provides a strategy to improve the detection sensitivity for biosensors based on the optical amplification provided by conjugated polymers.  相似文献   

13.
Closely structurally related triplet and quintet iron(IV) oxo complexes with a tetradentate aminopyridine ligand were generated in the gas phase, spectroscopically characterized, and their reactivities in hydrogen‐transfer and oxygen‐transfer reactions were compared. The spin states were unambiguously assigned based on helium tagging infrared photodissociation (IRPD) spectra of the mass‐selected iron complexes. It is shown that the stretching vibrations of the nitrate counterion can be used as a spectral marker of the central iron spin state.  相似文献   

14.
Cationic conjugated polymers (CCPs) have been widely utilized as signal amplifiers in biosensors to improve the detection sensitivity through fluorescence resonance energy transfer (FRET) from CCPs to dye-labeled probes or targets. This paper investigates the effect of sodium dodecyl sulfate (SDS) on energy transfer between a cationic polyfluoreneethynylene copolymer (P1) and Texas Red labeled single-stranded DNA (ssDNA-TR). The presence of SDS in solution affects both the optical properties of P1 and TR emission within P1/ssDNA-TR complexes, which provides basic information on the role of SDS in FRET between P1 and ssDNA-TR. Although the quantum yield of P1 decreases in the presence of low concentrations of SDS, the presence of SDS reduces TR fluorescence quenching within P1/ssDNA-TR complexes and increases the number of optically active polymer repeat units within the proximity of TR, which are beneficial to P1-sensitized TR emission. In the absence of SDS, FRET from P1 to ssDNA-TR provides a 2.6-fold enhancement in TR emission intensity as compared to that upon direct excitation of TR at 595 nm. At the optimum SDS concentration (5 microM), P1-sensitized TR signal output increases to 11.3-fold relative to direct excitation of TR. This study highlights the importance of modulation of the CCP/ssDNA-dye interaction in improving the signal output of dye-labeled DNA by CCP through FRET.  相似文献   

15.
Synthesis and application of quantum dots FRET-based protease sensors   总被引:2,自引:0,他引:2  
Preparation of FRET-based quantum dots as protease sensors-RGDC peptide molecules are bound to the surface of CdSe/ZnS quantum dots. The peptide molecules are then labeled with rhodamine dye molecules. The emission color of the quantum dots change from green to orange due to fluorescence resonance energy transfer (FRET) between the quantum dots and the bound rhodamine molecules. Cleavage of the peptide by selective proteases releases the rhodamine molecules from the quantum dots surface, which results in decreasing FRET efficiency between the quantum dots and the rhodamine molecules. The emission color of the quantum dots changes back to green.  相似文献   

16.
Three‐chromophore systems with light‐harvesting behavior were prepared, which are based on periodic mesoporous organosilica (PMO) with crystal‐like ordered structure. The organic bridges of biphenyl‐PMO in the pore walls act as donors and two types of dye are incorporated in the one‐dimensional channels. Consecutive two‐step‐Förster resonance energy transfer is observed from the biphenyl moieties to mediators (diethyl‐aminocoumarin or aminoacridone), followed by energy transfer from mediators to acceptors (dibenzothiacarbocyanine, indodicarbocyanine, sulforhodamine G). High energy‐transfer efficiencies ranging from 70 to 80 % are obtained for two‐step‐FRET, indicating that the mesochannel structure with one‐dimensional ordering provides spatial arrangement of chromophore pairs for an efficient direct energy transfer. The emission wavelength can be tuned by a choice of acceptor dye: 477 nm (diethylaminocoumarin), 519 nm (aminoacridone), 567 nm (sulforhodamine G), 630 nm (dibenzothiacarbocyanine), and 692 nm (indodicarbocyanine).  相似文献   

17.
A number of adamantane‐containing ruthenium(II) and rhenium(I) complexes have been synthesized, characterized, and noncovalently functionalized with β‐cyclodextrin‐capped gold nanoparticles (β‐CD–GNPs) through the host–guest interaction between cyclodextrin and adamantane. The resultant nanoconjugates have been characterized by transmission electron microscopy (TEM), energy‐dispersive X‐ray analysis (EDX), and 2D ROESY 1H NMR experiments. The Förster resonance energy transfer (FRET) properties of the nanoconjugates can be modulated by both esterase‐accelerated hydrolysis and competitive displacement of steroid, by monitoring the emission intensity and luminescence lifetime. The FRET efficiencies are found to vary with the nature of the chromophores and the length of the spacer between the transition metal complexes and the GNPs. This work constitutes a “proof‐of‐principle” assay method for the dual‐functional detection of important classes of biomolecules, such as enzymes and steroids.  相似文献   

18.
Atherosclerosis is a widespread and hazardous disease characterized by the formation of arterial plaques mostly composed of fat, cholesterol, and calcium ions. The direct solubilization of cholesterol represents a promising, atheroprotective strategy to subside lipid blood levels and reverse atherosclerosis. This study deals with the in‐depth analysis of polymer‐mediated cholesterol dissolution inside living human cells. To this end, a recently described multifunctional block‐polymer is labeled with Rhodamine B (RhoB) to investigate its interaction with cells via fluorescence microscopy. This gives insight into the cellular internalization process of the polymer, which appears to be clathrin‐ and caveolae/raft‐dependent endocytosis. In cell single particle tracking reveals an active transport of RhoB polymer including structures. Förster resonance energy transfer (FRET) measurements of cells treated with a fluorophore‐tagged cholesterol derivative and the RhoB polymer indicates the uptake of cholesterol by the polymeric particles. Hence, these results present a first step toward possible applications of cholesterol‐absorbing polymers for treating atherosclerosis.  相似文献   

19.
Summary: A cyclodextrin‐peptide hybrid bearing coumarin and fluorescein on the peptide side chain has been designed and synthesized as a novel chemosensor molecule utilizing fluorescence resonance energy transfer (FRET). Inclusion of coumarin into β‐cyclodextrin protects this system against fluorescent quenching, so that FRET occurs though donor and acceptor moieties nearby. FRET is diminished upon the addition of various guest compounds, suggesting that this system is useful for detecting molecules in aqueous solution.

A cyclodextrin‐peptide hybrid bearing coumarin and fluorescein on the peptide side chain.  相似文献   


20.
A new type of chain transfer agent used in reversible addition fragmentation chain transfer (RAFT) polymerization named 9‐anthracenylmethyl (4‐cyano‐4‐(N‐carbazylcarbodithioate) pentanoate) (ACCP) was synthesized with a total yield over 75% by the incorporation of both fluorescent donor and acceptor chromophores. Polymerization of heterotelechelic α,ω end‐labeled dye‐functionalized polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(n‐butyl methacrylate) (PBMA) with adjustable molecular weights and narrow polydispersity could be conducted by a one‐pot procedure through RAFT polymerization with this bischromophore chain transfer agent. The polymerizations demonstrated “living” controlled characteristics. By taking advantage of the characteristic fluorescence resonance energy transfer (FRET) response between the polymer chain terminals, the variation of chain dimensions in solution from the dilute region to the semidilute region can be monitored by changes in the ratio of the fluorescence intensities of the carbazolyl group to the anthryl group, which lends itself to potential applications in characterizing chain dimensions in solutions for thermodynamic or dynamic studies. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2413–2420  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号