首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the mass of a black hole embedded in a universe filled with dark energy and cold dark matter is calculated in a closed form within a test fluid model in a Schwarzschild metric, taking into account the cosmological evolution of both fluids. The result describes exactly how accretion asymptotically switches from the matter-dominated to the Λ-dominated regime. For early epochs, the black hole mass increases due to dark matter accretion, and on later epochs the increase in mass stops as dark energy accretion takes over. Thus, the unphysical behaviour of previous analyses is improved in this simple exact model.  相似文献   

2.
The stationary, spherically symmetric accretion of dark energy onto a Schwarzschild black hole is considered in terms of relativistic hydrodynamics. The approximation of an ideal fluid is used to model the dark energy. General expressions are derived for the accretion rate of an ideal fluid with an arbitrary equation of state p = p(ρ) onto a black hole. The black hole mass was found to decrease for the accretion of phantom energy. The accretion process is studied in detail for two dark energy models that admit an analytical solution: a model with a linear equation of state, p = α(ρ ? ρ0), and a Chaplygin gas. For one of the special cases of a linear equation of state, an analytical expression is derived for the accretion rate of dark energy onto a moving and rotating black hole. The masses of all black holes are shown to approach zero in cosmological models with phantom energy in which the Big Rip scenario is realized.  相似文献   

3.
We consider the effect of accretion of radiation, matter and dark energy in the early universe on primordial black holes (PBH) in f(T) gravity. Due to the Hawking radiation, mass of the primordial black hole decreases. We show that for the phantom accretion inclusion with the Hawking evaporation, the mass of the PBH decreases faster whereas for the accretion of radiation, matter and quintessence together with Hawking evaporation, the mass increases in f(T) gravity.  相似文献   

4.
We study the evolution of primordial black holes by considering present universe is no more matter dominated rather vacuum energy dominated. We also consider the accretion of radiation, matter and vacuum energy during respective dominance period. In this scenario, we found that radiation accretion efficiency should be less than 0.366 and accretion rate is much larger than previous analysis by Nayak et al. (2009) [1]. Thus here primordial black holes live longer than previous works Nayak and Singh (2011) [1]. Again matter accretion slightly increases the mass and lifetime of primordial black holes. However, the vacuum energy accretion is slightly complicated one, where accretion is possible only up to a critical time. If a primordial black hole lives beyond critical time, then its? lifespan increases due to vacuum energy accretion. But for presently evaporating primordial black holes, critical time comes much later than their evaporating time and thus vacuum energy could not affect those primordial black holes.  相似文献   

5.

Recent studies of black hole and neutron star low mass X-ray binaries (LMXBs) show a positive correlation between the X-ray flux at which the low/hard(LH)-to-high/soft(HS) state transition occurs and the peak flux of the following HS state. By analyzing the data from the All Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE), we show that the HS state flux after the source reaches its HS flux peak still correlates with the transition flux during soft X-ray transient (SXT) outbursts. By studying large outbursts or flares of GX 339-4, Aql X-1 and 4U 1705-44, we have found that the correlation holds up to 250, 40, and 50 d after the LH-to-HS state transition, respectively. These time scales correspond to the viscous time scale in a standard accretion disk around a stellar mass black hole or a neutron star at a radius of ∼104–5 R g, indicating that the mass accretion rates in the accretion flow either correlate over a large range of radii at a given time or correlate over a long period of time at a given radius. If the accretion geometry is a two-flow geometry composed of a sub-Keplerian inflow or outflow and a disk flow in the LH state, the disk flow with a radius up to ∼105 R g would have contributed to the nearly instantaneous non-thermal radiation directly or indirectly, and therefore affects the time when the state transition occurs.

  相似文献   

6.
We investigate the effects of accretion of phantom energy onto primordial black holes. Since Hawking radiation and phantom energy accretion contribute to a decrease of the mass of the black hole, the primordial black hole that would be expected to decay now due to the Hawking process would decay earlier due to the inclusion of the phantom energy. Equivalently, to have the primordial black hole decay now it would have to be more massive initially. We find that the effect of the phantom energy is substantial and the black holes decaying now would be much more massive—over ten orders of magnitude! This effect will be relevant for determining the time of production and hence the number of evaporating black holes expected in a universe accelerating due to phantom energy.  相似文献   

7.
In this paper, we examine the effect of dark matter to a Kerr black hole of mass m. The metric is derived using the Newman-Janis algorithm, where the seed metric originates from the Schwarzschild black hole surrounded by a spherical shell of dark matter with mass M and thickness Δrs. The seed metric is also described in terms of a piecewise mass function with three different conditions. Specializing in the non-trivial case where the observer resides inside the dark matter shell, we analyzed how the effective mass of the black hole environment affects the basic black hole properties. A high concentration of dark matter near the rotating black hole is needed to have considerable deviations on the horizons, ergosphere, and photonsphere radius. The time-like geodesic, however, shows more sensitivity to deviation even at very low dark matter density. Further, the location of energy extraction via the Penrose process is also shown to remain unchanged. With how the dark matter distribution is described in the mass function, and the complexity of how the shadow radius is defined for a Kerr black hole, deriving an analytic expression for Δrs as a condition for notable dark matter effects to occur remains inconvenient.  相似文献   

8.
In this paper, we have studied the accretion of phantom energy on a (2 + 1)-dimensional stationary Banados–Teitelboim–Zanelli (BTZ) black hole. It has already been shown by Babichev et al. that for the accretion of phantom energy onto a Schwarzschild black hole, the mass of black hole would decrease and the rate of change of mass would be dependent on the mass of the black hole. However, in the case of (2 + 1)-dimensional BTZ black hole, the mass evolution due to phantom accretion is independent of the mass of the black hole and is dependent only on the pressure and density of the phantom energy. We also study the generalized second law of thermodynamics at the event horizon and construct a condition that puts an lower bound on the pressure of the phantom energy.  相似文献   

9.
We study perturbations of black holes absorbing dark energy. Due to the accretion of dark energy, the black hole mass changes. We observe distinct perturbation behaviors for absorption of different forms of dark energy onto the black holes. This provides the possibility of extracting information whether dark energy lies above or below the cosmological constant boundary w=−1w=1. In particular, we find in the late time tail analysis that, differently from the other dark energy models, the accretion of phantom energy exhibits a growing mode in the perturbation tail. The instability behavior found in this work is consistent with the Big Rip scenario, in which all of the bound objects are torn apart with the presence of the phantom dark energy.  相似文献   

10.
In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole.  相似文献   

11.

For a sample of 185 flat-spectrum radio quasars (FSRQs) constructed from the SDSS DR3 quasar catalog, we found a significant correlation between the synchrotron peak luminosity and both the black hole mass and Eddington ratio. This implies that the physics of its jet formation is not only tightly related with the black hole mass, but also with the accretion rate. We verify that the synchrotron peak luminosity can be a better indicator of jet emission than 5 GHz luminosity, through comparing the relationships between each of these two parameters and both black hole mass and Eddington ratio. The fundamental plane of black hole activity for our FSRQs is established as L rL 0.80±0.06x M −0.04±0.09bh with a weak dependence on black hole mass, however, the scatter is significant.

  相似文献   

12.
In the classical relativistic regime, the accretion of phantom energy onto a black hole reduces the mass of the black hole. In this context, we have investigated the evolution of a Schwarzschild black hole in the standard model of cosmology using the phantom-like modified variable Chaplygin gas and the viscous generalized Chaplygin gas. The corresponding expressions for accretion time scale and evolution of mass have been derived. Our results indicate that the mass of the black hole will decrease if the accreting phantom Chaplygin gas violates the dominant energy condition and will increase in the opposite case. Thus, our results are in agreement with the results of Babichev et al. who first proposed this scenario.  相似文献   

13.
In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.  相似文献   

14.
The possibility of converting a Reissner-Nordström black hole into a naked singularity by means of test particle accretion is considered. The dually charged Reissner-Nordström metric describes a black hole only when M2 > Q3 + P2. The test particle equations of motion are shown to allow test particles with arbitrarily large magnetic charge/mass ratios to fall radially into electrically charged black holes. To determine the nature of the final state (black hole or naked singularity) an exact solution of Einstein's equations representing a spherical shell of magnetically charged dust falling into an electrically charged black hole is studied. Naked singularities are never formed so long as the weak energy condition is obeyed by the infalling matter. The differences between the spherical shell model and an infalling point test particle are examined and discussed.  相似文献   

15.
We investigate the effects of the accretion of phantom energy with non-zero bulk viscosity onto a Schwarzschild black hole and show that black holes accreting viscous phantom energy will lose mass rapidly compared to the non-viscous case. When matter is incorporated along with the phantom energy, the black holes meet with the same fate as bulk viscous forces dominate matter accretion. If the phantom energy has large bulk viscosity, then the mass of the black hole will reduce faster than in the small viscosity case.  相似文献   

16.
Lei-Hua Liu 《中国物理C(英文版)》2023,47(1):015105-015105-10
In light of our previous study [Chin. Phys. C 44(8), 085103 (2020)], we investigate the possibility of the formation of a primordial black hole in the second inflationary process induced by the oscillation of the curvaton. By adopting the instability of the Mathieu equation, one can utilize the δ function to fully describe the power spectrum. Owing to the running of the curvaton mass, we can simulate the value of the abundance of primordial black holes covering almost all of the mass ranges. Three special cases are given. One case may account for dark matter because the abundance of a primordial black hole is approximately 75% . As late times, the relic of exponential potential may be approximated to a constant of the order of a cosmological constant, which is dubbed as the role of dark energy. Thus, our model could unify dark energy and dark matter from the perspective of phenomenology. Finally, it sheds new light on exploring Higgs physics.  相似文献   

17.
The evolution of the dark matter distribution at the Galactic center is analyzed. It is caused by the combination of gravitational scattering by stars in the Galactic nucleus (bulge) and absorption by a supermassive black hole at the center of the bulge. Attention is focused on the boundary condition on the black hole. It is shown that its form depends on the energy of dark matter particles. The modified flux of dark matter particles onto the black hole is calculated. Estimates of the amount of absorbed dark matter show that the fraction of dark matter in the total mass of the black hole may be significant. The density of dark matter at the central part of the bulge is calculated. It is shown that recently observed γ radiation from the Galactic center can be attributed to the annihilation of dark matter with this density.  相似文献   

18.
Solution for a stationary spherically symmetric accretion of the relativistic perfect fluid with an equation of state p(rho) onto the Schwarzschild black hole is presented. This solution is a generalization of Michel solution and applicable to the problem of dark energy accretion. It is shown that accretion of phantom energy is accompanied by the gradual decrease of the black hole mass. Masses of all black holes tend to zero in the phantom energy Universe approaching the Big Rip.  相似文献   

19.
We consider the evolution of primordial black holes formed during the high energy phase of the braneworld scenario. We show that the effect of accretion from the surrounding radiation bath is dominant compared to evaporation for such black holes. This feature lasts till the onset of matter (or black hole) domination of the total energy density which could occur either in the high energy phase or later. We find that the black hole evaporation times could be significantly large even for black holes with small initial mass to survive until several cosmologically interesting eras.  相似文献   

20.
The Rastall gravity is the modified Einstein general relativity, in which the energy-momentum conservation law is generalized to \(T^{\mu \nu }_{~~;\mu }=\lambda R^{,\nu }\). In this work, we derive the Kerr–Newman-AdS (KN-AdS) black hole solutions surrounded by the perfect fluid matter in the Rastall gravity using the Newman–Janis method and Mathematica package. We then discuss the black hole properties surrounded by two kinds of specific perfect fluid matter, the dark energy (\(\omega =-\,2/3\)) and the perfect fluid dark matter (\(\omega =-\,1/3\)). Firstly, the Rastall parameter \(\kappa \lambda \) could be constrained by the weak energy condition and strong energy condition. Secondly, by analyzing the number of roots in the horizon equation, we get the range of the perfect fluid matter intensity \(\alpha \), which depends on the black hole mass M and the Rastall parameter \(\kappa \lambda \). Thirdly, we study the influence of the perfect fluid dark matter and dark energy on the ergosphere. We find that the perfect fluid dark matter has significant effects on the ergosphere size, while the dark energy has smaller effects. Finally, we find that the perfect fluid matter does not change the singularity of the black hole. Furthermore, we investigate the rotation velocity in the equatorial plane for the KN-AdS black hole with dark energy and perfect fluid dark matter. We propose that the rotation curve diversity in Low Surface Brightness galaxies could be explained in the framework of the Rastall gravity when both the perfect fluid dark matter halo and the baryon disk are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号