首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Nasal high flow (NHF) cannulae are used to deliver heated and humidified air to patients at steady flows ranging from 5 to 50 l/min. In this study, the flow velocities in the nasal cavity across the complete respiratory cycle during natural breathing and with NHF has been mapped in vitro using time-resolved stereoscopic particle image velocimetry (SPIV). An anatomically accurate silicone resin model of a complete human nasal cavity was constructed using CT scan data and rapid prototyping. Physiological breathing waveforms were reproduced in vitro using Reynolds and Womersley number matching and a piston pump driven by a ball screw and stepper motor. The flow pattern in the nasal cavity with NHF was found to differ significantly from natural breathing. Velocities of 2.4 and 3.3 ms−1 occurred in the nasal valve during natural breathing at peak expiration and inspiration, respectively; however, on expiration, the maximum velocity of 3.8 ms−1 occurred in the nasopharynx. At a cannula flow rate of 30 l/min, maximal velocities of 13.6 and 16.5 ms−1 at peak expiration and inspiration, respectively, were both located in the cannula jet within the nasal valve. Results are presented that suggest the quasi-steady flow assumption is invalid in the nasal cavity during natural breathing; however, it was valid with NHF. Cannula flow has been found to continuously flush the nasopharyngeal dead space, which may enhance carbon dioxide removal and increase oxygen fraction.  相似文献   

2.
Motion of monodispersed aerosol particles suspended in air flow has been studied on realistic transparent model of human airways using Phase Doppler Particle Analyser (P/DPA). Time-resolved velocity data for particles in size range 1–8 μm were processed using Fuzzy Slotting Technique to estimate the power spectral density (PSD) of velocity fluctuations. The optimum processing setup for our data was found and recommendations for future experiments to improve PSD quality were suggested. Typical PSD plots at mainstream positions of the trachea and the upper bronchi are documented and differences among (1) steady-flow regimes and equivalent cyclic breathing regimes, (2) inspiration and expiration breathing phase and (3) behaviour of particles of different sizes are described in several positions of the airway model. Systematically higher level of velocity fluctuations in the upper part of the frequency range (30–500 Hz) was found for cyclic flows in comparison with corresponding steady flows. Expiratory flows in both the steady and cyclic cases produce more high-frequency fluctuations compared to inspiratory flows. Negligible differences were found for flow of particles in the inspected size range 1–8 μm at frequencies below 500 Hz. This finding was explained by Stokes number analysis. Implied match of the air and particle flows thereby indicates turbulent diffusion as important deposition mechanism and confirms the capability to use the P/DPA data as the air flow velocity estimate.  相似文献   

3.
An experimental analysis of the unsteady flow field in a realistic, transparent model of the human lung is presented. The model consists of the bronchial tree up to the third generation of bifurcation. The spatial focus is on the second bifurcation between the right main bronchus and the subsequent lobe bronchi, whereas the temporal focus is on the transition from inspiration to expiration. Due to the highly three-dimensional and unsteady character of the flow field, time-resolved 3D-3C measurements are performed using quasi-volumetric stereo scanning particle-image velocimetry. The measurements cover the total bronchial cross-section and are taken for two Womersley numbers of α1 = 3.4 and α2 = 4.2 at one peak Reynolds number of Re D = 1,420, representing breathing at rest. The temporal and spatial development of the flow field is presented for three temporal states in six parallel planes. The measurements show the development of vortical structures of varying size and location. An increased mass flux into the right superior bronchus for α2, a frequency-dependent phase shift of the flow structures, and a heterogeneous outflow at the beginning of the expiration phase are evidenced.  相似文献   

4.
An more reliable human upper respiratory tract model that consisted of an oropharynx and four generations of asymmetric tracheo-bronchial (TB) airways has been constructed to investigate the micro-particle deposition pattern and mass distribution in five lobes under steady inspiratory condition in former work by Huang and Zhang (2011). In the present work, transient airflow patterns and particle deposition during both inspiratory and expiratory processes were numerically simulated in the realistic human upper respiratory tract model with 14 cartilaginous rings (CRs) in the tracheal tube. The present model was validated under steady inspiratory flow rates by comparing current results with the theoretical models and published experimental data. The transient deposition fraction was found to strongly depend on breathing flow rate and particle diameter but slightly on turbulence intensity. Particles were mainly distributed in the high axial speed zones and traveled basically following the secondary flow. “Hot spots” of deposition were found in the lower portion of mouth cavity and posterior wall of pharynx/larynx during inspiration, but transferred to upper portion of mouth and interior wall of pharynx/larynx during expiration. The deposition fraction in the trachea during expiration was found to be much higher than that during inspiration because of the stronger secondary flow.  相似文献   

5.
In this experimental study a thorough analysis of the steady and unsteady flow field in a realistic transparent silicone lung model of the first bifurcation of the upper human airways will be presented. To determine the temporal evolution of the flow time-resolved particle-image velocimetry recordings were performed for a Womersley number range 3.3 ≤ α ≤ 5.8 and Reynolds numbers of Re D = 1,050, 1,400, and 2,100. The results evidence a highly three-dimensional and asymmetric character of the velocity field in the upper human airways, in which the influence of the asymmetric geometry of the realistic lung model plays a significant role for the development of the flow field in the respiratory system. At steady inspiration, the flow shows independent of the Reynolds number a large zone with embedded counter-rotating vortices in the left bronchia ensuring a continuous streamwise transport into the lung. At unsteady flow the critical Reynolds number, which describes the onset of vortices in the first bifurcation, is increased at higher Womersley number and decreased at higher Reynolds number. At expiration the unsteady and steady flows are almost alike.  相似文献   

6.
7.
鼻腔加温功能特征及其与气流场关系的研究   总被引:1,自引:0,他引:1  
为研究鼻腔加温功能特征及其与气流场之间的关系, 选用1例健康国人的鼻腔进行CT扫描. 据CT数据对鼻腔气道进行表面三维重建, 运用计算流体动力学方法分析通气量为12L/min时吸气相0.15s, 0.45s, 0.75s的鼻腔气流场与温度场. 结果显示吸气相0.15s, 0.45s, 0.75s鼻腔气流场主要表现为双侧气流量分布不对称, 其中气流主要流经左侧; 双侧均为总鼻道中、下部气流量较多, 嗅裂、中鼻道和下鼻道气流量少. 吸气相0.15s, 0.45s, 0.75s温度场均表现为温度自鼻腔前端至鼻咽部逐渐增高, 其中温度主要上升区域为鼻内孔-下鼻甲前端-中鼻甲前端对应气道, 且在吸气速度和流量增大后, 这一主要加温区域无明显向后延长征象; 双侧鼻腔及单侧鼻腔不同部位气道气流分布差别较大, 但双侧温度场基本对称, 单侧鼻腔不同气道部位温度差值亦较小, 幅度均小于1℃.  相似文献   

8.
A technique to visualize airflow using IR thermography is developed. A trace quantity of sulfur hexafluoride (SF6) gas is injected into the flow field to detect intensity patterns using a scanning IR thermography system with a single 8–13 μm bandwidth detector. Equations that relate the intensity patterns to volume-averaged temperature and SF6 mass concentration are presented. The visualization technique involves using a background surface at a known temperature different from that of the flow and image subtraction. The technique is demonstrated on free, impinging, and reattachment subsonic air jets, and is shown to be an effective means of visualizing flows at both elevated and ambient temperatures. Published online: 9 January 2003  相似文献   

9.
A method for the construction of both rigid and compliant (flexible) transparent flow phantoms of biological flow structures, suitable for PIV and other optical flow methods with refractive-index-matched working fluid is described in detail. Methods for matching the in vivo compliance and elastic wave propagation wavelength are presented. The manipulation of MRI and CT scan data through an investment casting mould is described. A method for the casting of bubble-free phantoms in silicone elastomer is given. The method is applied to fabricate flexible phantoms of the carotid artery (with and without stenosis), the carotid artery bifurcation (idealised and patient-specific) and the human upper airway (nasal cavity). The fidelity of the phantoms to the original scan data is measured, and it is shown that the cross-sectional error is less than 5% for phantoms of simple shape but up to 16% for complex cross-sectional shapes such as the nasal cavity. This error is mainly due to the application of a PVA coating to the inner mould and can be reduced by shrinking the digital model. Sixteen per cent variation in area is less than the natural patient to patient variation of the physiological geometries. The compliance of the phantom walls is controlled within physiologically realistic ranges, by choice of the wall thickness, transmural pressure and Young’s modulus of the elastomer. Data for the dependence of Young’s modulus on curing temperature are given for Sylgard 184. Data for the temperature dependence of density, viscosity and refractive index of the refractive-index-matched working liquid (i.e. water–glycerol mixtures) are also presented.  相似文献   

10.
Three quantitative flow classification parameters have been studied in the context of Tanner and Huilgol’s suggestion of strong and weak flows. Seen in this context, the different types of streamlines possible for general 3-D flows furnish no indication with respect to the flow strength. This is in total contrast to 2-D flows, where the type of the streamline and the strength of the flow go hand in hand. Astarita’s [J Non-Newton Fluid Mech, 6:69–76, 1979] flow classification parameter takes care of this fact and, if properly generalized, can be applied to more general flows: Two other flow classification parameters also have their basis in homogeneous 2-D flows, but their generalization leads, for general flows, to nonuniqueness and other unacceptable results. For 3-D flows, none of the parameters can quantitatively be used in general, and additional parameters, with their basis outside the 2-D flow regime, seem to be called for.
P. O. BrunnEmail:
  相似文献   

11.
A digital dual-camera cinematographic particle image velocimetry (CPIV) system has been developed to provide time-resolved, high resolution flow measurements in high-Reynolds number, turbulent flows. Two high-speed CMOS cameras were optically combined to acquire double-pulsed CPIV images at kilohertz frame rates. Bias and random errors due to camera misalignment, camera vibration, and lens aberration were corrected or estimated. Systematic errors due to the camera misalignment were reduced to less than 2 pixels throughout the image plane using mechanical alignment, resulting in 3.1% positional uncertainty of velocity measurements. Frame-to-frame uncertainties caused by mechanical vibration were eliminated with the aid of digital image calibration and frame-to-frame camera registration. This dual-camera CPIV system is capable of resolving high speed, unsteady flows with high temporal and spatial resolutions. It also allows time intervals between the two exposures down to 4 μs, enabling the measurements of speed flows 5–10 times higher than possible with frame-straddling using similar cameras. A turbulent shallow cavity was then chosen as the experimental object investigated by this dual-camera CPIV technique.  相似文献   

12.
A steady state numerical study of combined laminar mixed convection and conduction heat transfer in a ventilated square cavity is presented. The air inlet gap is located at the bottom of a vertical glazing wall and air exits the cavity via a gap located at the top surface. Three locations for the opening at the top surface: left (case a), center (case b) and right side (case c) are considered. All the remaining surfaces are considered adiabatic. The mass, momentum and energy conservation equations were solved using the finite volume method for different Rayleigh numbers in the interval of 104 < Ra < 106 and Reynolds number in the interval of 100 < Re < 700. Temperature, flow field, and heat transfer rates are analyzed. The effect of the interaction between ambient conditions outside the glazing and the air inlet gap at the bottom for different air outlet gap positions at the top surface modifies the flow structure and temperature distribution of the air inside the cavity. The Nusselt number as a function of the Reynolds number was determined for the three cases. It was found that configuration for case (a) removes a higher amount of heat entering the cavity compared to cases (b) and (c). This is due to the short distance between the main stream and the glass wall surface. Thus, the forced airflow entering the cavity is assisted by the buoyancy forces, and most of the cavity remains at the inlet flow temperature, which should be appropriate for warm climates. These results may provide useful information about the heat transfer and fluid flow for future studies.  相似文献   

13.
The objective of the study is an analysis of lung ventilation during breathing under rest conditions and for high frequency ventilation (HFV). The measurements include investigations of the flow using an endotracheal tube. A transparent model of the upper human lung airways down to the 6th generation was generated, and the oscillatory flow through the branching network was studied by DPIV. The method of refractive index matching of the fluid (water/glycerin) and the model (silicone) allows an unobstructed view into the internal flow network. The mass flow rate and the frequency were adapted to the characteristic flow parameters, the Reynolds- and the Womersley-number. The comparison of the results for normal breathing and HFV shows that a mass exchange occurs for higher frequencies known as Pendelluft, which could not be seen during normal breathing. This mass exchange between the daughter tubes is a consequence of the asymmetric impedance in the successive daughter branches. The lung topology determines the local pressure loss in the model and therefore the local mass flow direction of the Pendelluft. At higher frequencies we observed an increase in exchange between the daughter branches. The transformation of the velocity profiles between inspiration and expiration suggests a net mass flow which is created into the model along the centerline and the inner walls of the bifurcations. This flow is compensated with a net mass outflow to the trachea along the outer walls of the branches.  相似文献   

14.
A detailed numerical study is carried out to investigate fluid flow and heat transfer characteristics in a channel with heated V corrugated upper and lower plates. The parameters studied include the Reynolds number (Re = 2,000–5,500), angles of V corrugated plates (θ = 20°, 40°, 60°), and constant heat fluxs (q″ = 580, 830, 1,090 W/m2). Numerical results have been validated using the experimented data reported by Naphon, and a good agreement has been found. The angles of V corrugated plates (θ) and the Reynolds number are demonstrated to significantly affect the fluid flow and the heat transfer rate. Increasing the angles of V corrugated plates can make the heat transfer performance become better. The increasing Reynolds number leads to a more complex fluid flow and heat transfer rate. The numerical calculations with a non-equilibrium wall function have a better accuracy than with a standard wall function for solving high Reynolds numbers or complex flow problems.  相似文献   

15.
Howard See 《Rheologica Acta》2003,42(1-2):86-92
A comparison was made of the behaviour of a magnetorheological suspension under steady shear flow and constant velocity squeezing flow. The strain rates and sample dimensions were chosen to be comparable in the two deformation modes, and the dependence of the mechanical properties on the magnetic flux density B was investigated. The measurements found that the mechanical response under squeezing flow scaled as B0.91, whereas the response under shearing scaled as B1.4, close to theoretical predictions. This difference of the field dependence between the shearing and squeezing flows was possibly due to the different microstructural rearrangement processes which occur in the two deformation modes.  相似文献   

16.
A 30 dB reduction of the peak pressure tone and a reduction by 6 dB of the background pressure found in an experiment of high-subsonic cavity flow controlled by a spanwise rod are retrieved numerically. The injection of deterministic upstream fluctuations in the large-eddy simulation (LES) domain is found to be of crucial importance, in contrast with the baseflow case. Reduction of the vortex impingement onto the aft edge of the cavity is confirmed, together with reduction of mass flow rate breathing through the grazing plane. Visual evidence of merging between the Kelvin–Helmholtz-type vortices shed downstream of the fore edge of the cavity and the von Kármán vortices shed behind the cylinder is provided. Shocklets downstream of the cylinder are also observed.  相似文献   

17.
Open-cavity flows are known to exhibit a few well-defined peaks in the power spectral distribution of velocity or pressure signals recorded close to the impinging corner. The measured frequencies are in fact common to the entire flow, indicating some global organisation of the flow. The modal structures, i.e. the spatial distribution of the most characteristic frequencies in the flow, are experimentally investigated using time-resolved particle image velocimetry. Each spatial point, of the resulting two-dimension-two-component (2D–2C) velocity fields, provides time-resolved series of the velocity components V x and V y , in a (xy) streamwise plane orthogonal to cavity bottom. Each local time-series is Fourier-transformed, such as to provide the spectral distribution at any point of the PIV-plane. One finally obtains the spatial structure associated with any frequency of the Fourier spectrum. Some of the modal spatial structures are expected to represent the nonlinear saturation of the global modes, against which the stationary solution of the Navier–Stokes equations may have become linearly unstable. Following Rowley et al. (J Fluid Mech 641:115–127, 2009), our experimental modal structures may even correspond to the Koopman modes of this incompressible cavity flow.  相似文献   

18.
We investigate the effect of hydrophobic aggregation in alkali-swellable acrylic thickener solutions on shear and extensional flow properties at technically relevant polymer concentrations using the commercial thickener Sterocoll FD as model system. Apparent molecular weight of aggregates in water is M w  ≈ 108 g/mol and decreases by more than an order of magnitude in ethanol. Zero shear viscosity η 0 is low and shear thinning is weak compared to the high molecular weight of the aggregates. Linear viscoelastic relaxation is described by the Zimm theory up to frequencies of 104 rad/s, demonstrating that no entanglements are present in these solutions. This is further supported by the concentration dependence of η 0 and is attributed to strong association within the aggregates. Extensional flow behavior is characterized using the capillary break-up extensional rheometry technique including high-speed imaging. Solutions with ϕ ≥ 1% undergo uniform deformation and show pronounced strain hardening up to large Hencky strains. Elongational relaxation times are more than one order of magnitude lower than the longest shear relaxation times, suggesting that aggregates cannot withstand strong flows and do not contribute to the elongational viscosity.
Norbert WillenbacherEmail:
  相似文献   

19.
Although equilibrium of spherical particles under radial migration has been extensively investigated, mostly in macroscale flows with characteristic lengths on the order of centimeters, it is not fully characterized at relatively small Reynolds numbers, 1 ≤ Re ≤ 100. This paper experimentally studies “inertial microfluidic” radial migration of spherical particles in circular Poiseuille flow through a microcapillary. Microparticle tracking experiments are performed to obtain the spatial distribution of the particles by adopting a depth-resolved measurement technique. Through the analysis of the radial distribution of particles, inertial microfluidic circular Poiseuille flow is shown to induce a strong radial migration of particles at substantially small Re, which is quite in contrast to the pipe flows at large Re previously reported. This particle migration phenomenon is so prominent that particle equilibrium positions are formed even at small Re. However, it turns out that there exists a certain critical Re below which particle equilibrium position is almost fixed, but above which it seems to drift toward the channel wall.  相似文献   

20.
The flow over a truncated cone is a classical and fundamental problem for aerodynamic research due to its three-dimensional and complicated characteristics. The flow is made more complex when examining high angles of incidence. Recently these types of flows have drawn more attention for the purposes of drag reduction in supersonic/hypersonic flows. In the present study the flow over a truncated cone at various incidences was experimentally investigated in a Mach 5 flow with a unit Reynolds number of 13.5 × 106 m−1. The cone semi-apex angle is 15° and the truncation ratio (truncated length/cone length) is 0.5. The incidence of the model varied from −12° to 12° with 3° intervals relative to the freestream direction. The external flow around the truncated cone was visualised by colour Schlieren photography, while the surface flow pattern was revealed using the oil flow method. The surface pressure distribution was measured using the anodized aluminium pressure-sensitive paint (AA-PSP) technique. Both top and sideviews of the pressure distribution on the model surface were acquired at various incidences. AA-PSP showed high pressure sensitivity and captured the complicated flow structures which correlated well with the colour Schlieren and oil flow visualisation results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号