首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider a hyperbolic equation, with a memory term in time, which can be seen as a singular perturbation of the heat equation with memory. The qualitative properties of the solutions of the initial boundary value problems associated with both equations are studied. We propose numerical methods for the hyperbolic and parabolic models and their stability properties are analyzed. Finally, we include numerical experiments illustrating the performance of those methods.  相似文献   

2.
In this paper, a fully discrete defect-correction mixed finite element method (MFEM) for solving the non-stationary conduction-convection problems in two dimension, which is leaded by combining the Back Euler time discretization with the two-step defect correction in space, is presented. In this method, we solve the nonlinear equations with an added artificial viscosity term on a finite element grid and correct these solutions on the same grid using a linearized defect-correction technique. The stability and the error analysis are derived. The theory analysis shows that our method is stable and has a good convergence property. Some numerical results are also given, which show that this method is highly efficient for the unsteady conduction-convection problems.  相似文献   

3.
In this paper we propose a time–space adaptive method for micromagnetic problems with magnetostriction. The considered model consists of coupled Maxwell's, Landau–Lifshitz–Gilbert (LLG) and elastodynamic equations. The time discretization of Maxwell's equations and the elastodynamic equation is done by backward Euler method, the space discretization is based on Whitney edge elements and linear finite elements, respectively. The fully discrete LLG equation reduces to an ordinary differential equation, which is solved by an explicit method, that conserves the norm of the magnetization.  相似文献   

4.
In this paper we obtain convergence results for the fully discrete projection method for the numerical approximation of the incompressible Navier–Stokes equations using a finite element approximation for the space discretization. We consider two situations. In the first one, the analysis relies on the satisfaction of the inf-sup condition for the velocity-pressure finite element spaces. After that, we study a fully discrete fractional step method using a Poisson equation for the pressure. In this case the velocity-pressure interpolations do not need to accomplish the inf-sup condition and in fact we consider the case in which equal velocity-pressure interpolation is used. Optimal convergence results in time and space have been obtained in both cases.  相似文献   

5.
We consider a numerical scheme for a class of degenerate parabolic equations, including both slow and fast diffusion cases. A particular example in this sense is the Richards equation modeling the flow in porous media. The numerical scheme is based on the mixed finite element method (MFEM) in space, and is of one step implicit in time. The lowest order Raviart–Thomas elements are used. Here we extend the results in Radu et al. (SIAM J Numer Anal 42:1452–1478, 2004), Schneid et al. (Numer Math 98:353–370, 2004) to a more general framework, by allowing for both types of degeneracies. We derive error estimates in terms of the discretization parameters and show the convergence of the scheme. The features of the MFEM, especially of the lowest order Raviart–Thomas elements, are now fully exploited in the proof of the convergence. The paper is concluded by numerical examples.  相似文献   

6.
Summary. Explicit finite difference schemes are given for a collection of parabolic equations which may have all of the following complex features: degeneracy, quasilinearity, full nonlinearity, and singularities. In particular, the equation of “motion by mean curvature” is included. The schemes are monotone and consistent, so that convergence is guaranteed by the general theory of approximation of viscosity solutions of fully nonlinear problems. In addition, an intriguing new type of nonlocal problem is analyzed which is related to the schemes, and another very different sort of approximation is presented as well. Received January 10, 1995  相似文献   

7.
In this paper we estimate the error of upwind first order finite volume schemes applied to scalar conservation laws. As a first step, we consider standard upwind and flux finite volume scheme discretization of a linear equation with space variable coefficients in conservation form. We prove that, in spite of their lack of consistency, both schemes lead to a first order error estimate. As a final step, we prove a similar estimate for the nonlinear case. Our proofs rely on the notion of geometric corrector, introduced in our previous paper by Bouche et al. (2005) [24] in the context of constant coefficient linear advection equations.  相似文献   

8.
Summary. One approximates the entropy weak solution u of a nonlinear parabolic degenerate equation by a piecewise constant function using a discretization in space and time and a finite volume scheme. The convergence of to u is shown as the size of the space and time steps tend to zero. In a first step, estimates on are used to prove the convergence, up to a subsequence, of to a measure valued entropy solution (called here an entropy process solution). A result of uniqueness of the entropy process solution is proved, yielding the strong convergence of to{\it u}. Some on a model equation are shown. Received September 27, 2000 / Published online October 17, 2001  相似文献   

9.
We propose and analyze a numerical scheme for nonlinear degenerate parabolic convection–diffusion–reaction equations in two or three space dimensions. We discretize the diffusion term, which generally involves an inhomogeneous and anisotropic diffusion tensor, over an unstructured simplicial mesh of the space domain by means of the piecewise linear nonconforming (Crouzeix–Raviart) finite element method, or using the stiffness matrix of the hybridization of the lowest-order Raviart–Thomas mixed finite element method. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh, where the dual volumes are constructed around the sides of the original mesh. Checking the local Péclet number, we set up the exact necessary amount of upstream weighting to avoid spurious oscillations in the convection-dominated case. This technique also ensures the validity of the discrete maximum principle under some conditions on the mesh and the diffusion tensor. We prove the convergence of the scheme, only supposing the shape regularity condition for the original mesh. We use a priori estimates and the Kolmogorov relative compactness theorem for this purpose. The proposed scheme is robust, only 5-point (7-point in space dimension three), locally conservative, efficient, and stable, which is confirmed by numerical experiments.This work was supported by the GdR MoMaS, CNRS-2439, ANDRA, BRGM, CEA, EdF, France.  相似文献   

10.
Summary. The flow of a closed surface of codimension 1 in driven by curvature is first approximated by a singularly perturbed parabolic double obstacle problem with small parameter . Conforming piecewise linear finite elements, with mass lumping, over a quasi-uniform and weakly acute mesh of size are further used for space discretization, and combined with forward differences for time discretization with uniform time-step . The resulting explicit schemes are the basis for an efficient algorithm, the so-called dynamic mesh algorithm, and exhibit finite speed of propagation and discrete ondegeneracy. No iteration is required, not even to handle the obstacle constraints. The zero level set of the fully discrete solution is shown to converge past singularities to the true interface, provided and no fattening occurs. If the more stringent relations are enforced, then an interface rate of convergence is derived in the vicinity of regular points, along with a companion for type I singularities. For smooth flows, an interface rate of convergence of is proven, provided and exact integration is used for the potential term. The analysis is based on constructing fully discrete barriers via an explicit parabolic projection with quadrature, which bears some intrinsic interest, Lipschitz properties of viscosity solutions of the level set approach, and discrete nondegeneracy. These basic ingredients are also discussed. Received June 20, 1995  相似文献   

11.
Hedging a contingent claim with an asset which is not perfectly correlated with the underlying asset results in unhedgeable residual risk. Even if the residual risk is considered diversifiable, the option writer is faced with the problem of uncertainty in the estimation of the drift rates of the underlying and the hedging instrument. If the residual risk is not considered diversifiable, then this risk can be priced using an actuarial standard deviation principle in infinitesimal time. In both cases, these models result in the same nonlinear partial differential equation (PDE). A fully implicit, monotone discretization method is developed for solution of this pricing PDE. This method is shown to converge to the viscosity solution. Certain grid conditions are required to guarantee monotonicity. An algorithm is derived which, given an initial grid, inserts a finite number of nodes in the grid to ensure that the monotonicity condition is satisfied. At each timestep, the nonlinear discretized algebraic equations are solved using an iterative algorithm, which is shown to be globally convergent. Monte Carlo hedging examples are given to illustrate the profit and loss distribution at the expiry of the option.  相似文献   

12.
This paper is concerned with a compact locally one-dimensional (LOD) finite difference method for solving two-dimensional nonhomogeneous parabolic differential equations. An explicit error estimate for the finite difference solution is given in the discrete infinity norm. It is shown that the method has the accuracy of the second-order in time and the fourth-order in space with respect to the discrete infinity norm. A Richardson extrapolation algorithm is developed to make the final computed solution fourth-order accurate in both time and space when the time step equals the spatial mesh size. Numerical results demonstrate the accuracy and the high efficiency of the extrapolation algorithm.  相似文献   

13.
The numerical solution of a parabolic problem is studied. The equation is discretized in time by means of a second order two step backward difference method with variable time step. A stability result is proved by the energy method under certain restrictions on the ratios of successive time steps. Error estimates are derived and applications are given to homogenous equations with initial data of low regularity.  相似文献   

14.
Summary Spinodal decomposition, i.e., the separation of a homogeneous mixture into different phases, can be modeled by the Cahn-Hilliard equation - a fourth order semilinear parabolic equation. If elastic stresses due to a lattice misfit become important, the Cahn-Hilliard equation has to be coupled to an elasticity system to take this into account. Here, we present a discretization based on finite elements and an implicit Euler scheme. We first show solvability and uniqueness of solutions. Based on an energy decay property we then prove convergence of the scheme. Finally we present numerical experiments showing the impact of elasticity on the morphology of the microstructure.Research supported by DFG Priority Program Analysis, Modeling and Simulation of Multiscale Problems under AR234/5-2 and GA695/2-2  相似文献   

15.
Summary. It is well-known the loss of accuracy when a Runge–Kutta method is used together with the method of lines for the full discretization of an initial boundary value problem. We show that this phenomenon, called order reduction, is caused by wrong boundary values in intermediate stages. With a right choice, the order reduction can be avoided and the optimal order of convergence in time is achieved. We prove this fact for time discretizations of abstract initial boundary value problems based on implicit Runge–Kutta methods. Moreover, we apply these results to the full discretization of parabolic problems by means of Galerkin finite element techniques. We present some numerical examples in order to confirm that the optimal order is actually achieved. Received July 10, 2000 / Revised version received March 13, 2001 / Published online October 17, 2001  相似文献   

16.
Summary In this first of two papers, computable a posteriori estimates of the space discretization error in the finite element method of lines solution of parabolic equations are analyzed for time-independent space meshes. The effectiveness of the error estimator is related to conditions on the solution regularity, mesh family type, and asymptotic range for the mesh size. For clarity the results are limited to a model problem in which piecewise linear elements in one space dimension are used. The results extend straight-forwardly to systems of equations and higher order elements in one space dimension, while the higher dimensional case requires additional considerations. The theory presented here provides the basis for the analysis and adaptive construction of time-dependent space meshes, which is the subject of the second paper. Computational results show that the approach is practically very effective and suggest that it can be used for solving more general problems.The work was partially supported by ONR Contract N00014-77-C-0623  相似文献   

17.
Summary. The long-time behaviour of numerical approximations to the solutions of a semilinear parabolic equation undergoing a Hopf bifurcation is studied in this paper. The framework includes reaction-diffusion and incompressible Navier-Stokes equations. It is shown that the phase portrait of a supercritical Hopf bifurcation is correctly represented by Runge-Kutta time discretization. In particular, the bifurcation point and the Hopf orbits are approximated with higher order. A basic tool in the analysis is the reduction of the dynamics to a two-dimensional center manifold. A large portion of the paper is therefore concerned with studying center manifolds of the discretization. Received March 18, 1997 / Revised version received February 19, 1998  相似文献   

18.
A nonlinear finite difference scheme with high accuracy is studied for a class of two-dimensional nonlinear coupled parabolic-hyperbolic system. Rigorous theoretical analysis is made for the stability and convergence properties of the scheme, which shows it is unconditionally stable and convergent with second order rate for both spatial and temporal variables. In the argument of theoretical results, difficulties arising from the nonlinearity and coupling between parabolic and hyperbolic equations are overcome, by an ingenious use of the method of energy estimation and inductive hypothesis reasoning. The reasoning method here differs from those used for linear implicit schemes, and can be widely applied to the studies of stability and convergence for a variety of nonlinear schemes for nonlinear PDE problems. Numerical tests verify the results of the theoretical analysis. Particularly it is shown that the scheme is more accurate and faster than a previous two-level nonlinear scheme with first order temporal accuracy.  相似文献   

19.
This work concerns analysis and error estimates for optimal control problems related to implicit parabolic equations. The minimization of the tracking functional subject to implicit parabolic equations is examined. Existence of an optimal solution is proved and an optimality system of equations is derived. Semi-discrete (in space) error estimates for the finite element approximations of the optimality system are presented. These estimates are symmetric and applicable for higher-order discretizations. Finally, fully-discrete error estimates of arbitrarily high-order are presented based on a discontinuous Galerkin (in time) and conforming (in space) scheme. Two examples related to the Lagrangian moving mesh Galerkin formulation for the convection-diffusion equation are described.  相似文献   

20.
In this paper we discuss the existence of periodic solutions of discrete (and discretized) non-linear Volterra equations with finite memory. The literature contains a number of results on periodic solutions of non-linear Volterra integral equations with finite memory, of a type that arises in biomathematics. The “summation” equations studied here can arise as discrete models in their own right but are (as we demonstrate) of a type that arise from the discretization of such integral equations. Our main results are in two parts: (i) results for discrete equations and (ii) consequences for quadrature methods applied to integral equations. The first set of results are obtained using a variety of fixed-point theorems. The second set of results address the preservation of properties of integral equations on discretizing them. The effect of weak singularities is addressed in a final section. The detail that is presented, which is supplemented using appendices, reflects the differing prerequisites of functional analysis and numerical analysis that contribute to the outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号