首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal conductivity of the spin-1/2 ladder system Sr14-xCaxCu24O41 ( x = 0, 2, and 12) has been measured both along ( kappa(c)) and perpendicular to ( kappa(a)) the ladder direction at temperatures between 5 and 300 K. While the temperature dependence of kappa(a) is typical for phonon heat transport, an unusual double-peak structure is observed for kappa(c)(T). We interpret this unexpected feature as a manifestation of quasi-one-dimensional magnon thermal transport mediated by spin excitations along the ladders.  相似文献   

2.
Spin-lattice relaxation of (129)Xe nuclei in solid natural xenon has been investigated in detail over a large range of paramagnetic O(2) impurity concentrations. Direct measurements of the ground state magnetic properties of the O(2) are difficult because the ESR (electron spin resonance) lines of O(2) are rather unstructured, but NMR measurements in the liquid helium temperature region (1.4-4 K) are very sensitive to the effective magnetic moments associated with the spin 1 Zeeman levels of the O(2) molecules and to the O(2) magnetic relaxation. From these measurements, the value of the D[Sz(2)-(1/3)S(2)] spin-Hamiltonian term of the triplet spin ground state of O(2) can be determined. The temperature and magnetic field dependence of the measured paramagnetic O(2)-induced excess line width of the (129)Xe NMR signal agree well with the theoretical model with the spin-Hamiltonian D=0.19 meV (2.3 K), and with the reasonable assumption that the E[S(x)(2)-S(y)(2)] spin-Hamiltonian term is close to 0 meV. An anomalous temperature dependence between 1.4 K and 4.2K of the (129)Xe spin-lattice relaxation rate, T(1n)(-1)(T), is also accounted for by our model. Using an independent determination of the true O(2) concentration in the Xe-O(2) solid, the effective spin lattice relaxation time (which will be seen to be transition dependent) of the O(2) at 2.3 K and 0.96 T is determined to be approximately 1.4 x 10(-8)s. The experimental results, taken together with the relaxation model, suggest routes for bringing highly spin-polarized (129)Xe from the low temperature condensed phase to higher temperatures without excessive depolarization.  相似文献   

3.
We report a comparative study of (63)Cu nuclear magnetic resonance spin lattice relaxation rates T(1)(-1) on undoped SrCuO(2) and Ca-doped Sr(0.9)Ca(0.1)CuO(2) spin chain compounds. A temperature independent T(1)(-1) is observed for SrCuO(2) as expected for an S=1/2 Heisenberg chain. Surprisingly, we observe an exponential decrease of T(1)(-1) for T<90 K in the Ca-doped sample evidencing the opening of a spin gap. The data analysis within the J(1)-J(2) Heisenberg model employing density-matrix renormalization group calculations suggests an impurity driven small alternation of the J(2)-exchange coupling as a possible cause of the spin gap.  相似文献   

4.
Thermal transport in the mixed state of a d-wave superconductor is considered within the weak-field regime. We express the thermal conductivity, kappa(xx), and the thermal Hall conductivity, kappa(xy), in terms of the cross section for quasiparticle scattering from a single vortex. Solving for the cross section (neglecting the Berry phase contribution and the anisotropy of the gap nodes), we obtain kappa(xx)(H,T) and kappa(xy)(H,T) in surprisingly good agreement with the qualitative features of the experimental results for YBa2Cu3O6.99. In particular, we show that the simple, yet previously unexpected, weak-field behavior, kappa(xy)(H,T) approximately T squareroot [H], is that of thermally excited nodal quasiparticles, scattering primarily from impurities, with a small skew component provided by vortex scattering.  相似文献   

5.
The thermal conductivity kappa(T) of the RVO3 crystals was measured. At T>T(infinity), RVO3 crystals conduct heat like a glass; the phonon contribution to kappa(T) is completely suppressed by spin and orbital fluctuations. In the interval T(N)T(infinity), a phononlike kappa(T) was observed at T相似文献   

6.
We study heat transport in quasi-one-dimensional spin-chain systems by considering the model of one-dimensional bosonic spin excitations interacting with three-dimensional phonons and impurities in the limit of weak spin-lattice coupling and fast spin excitations. A combined effect of the phonon and impurity scatterings yields the following spin-boson thermal conductivity behavior: kappa(s) proportional to T2 at low, kappa(s) proportional to T-1 at intermediate, and kappa(s)= const at higher temperatures. Our results agree well with the existing experimental data for Sr2CuO3. We predict an unusual dependence on the impurity concentration for a number of observables and propose further experiments.  相似文献   

7.
We measured thermal conductivity kappa, thermoelectric power S, and electric conductivity sigma of La(5/8-x)Pr(x)Ca(3/8)MnO3, showing an intricate interplay between metallic ferromagnetism (FM) and charge ordering (CO) instability. The change of kappa, S, and sigma with temperature (T) and x agrees well with the effective medium theories for binary metal-insulator mixtures. This agreement clearly demonstrates that with the variation of T as well as x, the relative volumes of FM and CO phases drastically change and percolative metal-insulator transition occurs in the mixture of FM and CO domains.  相似文献   

8.
We present a study of the magnetic field-dependent thermal transport in the spin S=1 chain material Ni(C(2)H(8)N(2))(2)NO(2)(ClO(4)) (NENP). The measured thermal conductivity is found to be very sensitive to the field-induced changes in the spin excitation spectrum. The magnetic contribution to the total heat conductivity is analyzed in terms of a quasiparticle model, and we obtain a temperature and momentum independent mean free path. This implies that the motion of quasiparticles is effectively three dimensional despite the tiny interchain coupling.  相似文献   

9.
We present experimental results for the thermal conductivity kappa of the pseudo-two-leg ladder material CaCu2O3. The strong buckling of the ladder rungs renders this material a good approximation to a S=1/2 Heisenberg chain. Despite a strong suppression of the thermal conductivity of this material in all crystal directions due to inherent disorder, we find a dominant magnetic contribution kappa mag along the chain direction. kappa mag is linear in temperature, resembling the low-temperature limit of the thermal Drude weight D th of the S=1/2 Heisenberg chain. The comparison of kappamag and Dth yields a magnetic mean-free path of l mag approximately 22+/-5 A, in good agreement with magnetic measurements.  相似文献   

10.
We study the thermal transport properties of several quantum-spin chains and ladders. We find indications for a diverging thermal conductivity at finite temperatures for the models examined. The temperature at which the nondiverging prefactor kappa((th))(T) peaks is, in general, substantially lower than the temperature at which the corresponding specific heat c(V)(T) is maximal. We show that this result of the microscopic approach leads to a substantial reduction for estimates of the magnetic mean-free path lambda extracted by analyzing recent experiments, as compared to similar analyses by phenomenological theories.  相似文献   

11.
The electrical conductivity (σ) of hydrogen doped (Zr(2)Fe)(1-x)H(x) metallic glasses has been measured in the temperature range from 290 down to 5 K. The decrease of the room temperature conductivity and the increase of its temperature coefficient are explained as consequences of increased disorder due to hydrogen doping. σ(T) for (Zr(2)Fe)(1-x)H(x) metallic glasses at low temperatures decreases with the increase of temperature, forming a minimum at T(min), before it starts a monotonic increase with increasing temperature. Both the functional forms and the magnitudes of the observed σ(T) are interpreted in terms of weak localization, electron-electron interaction and spin-fluctuation effects. Our results reveal that the electron-phonon scattering rate varies with the square of temperature from low temperatures up to 100 K and changes behaviour to a linear form at higher temperatures. At low temperatures, the minimum in σ(T) is shifted to higher temperatures, which is ascribed to the increase of the screening parameter of the Coulomb interaction F* associated with the enhancement of the spin fluctuations arising from the increase of the hydrogen doping. The spin-orbit scattering rate and the electron diffusion constant are reduced by hydrogen doping.  相似文献   

12.
Low-temperature (4-55 K) pulsed EPR measurements were performed with the magnetic field directed along the z-axis of the g-factor of the low-symmetry octahedral complex [(63)Cu(L-aspartate)(2)(H2O)2] undergoing dynamic Jahn-Teller effect in diaqua(L-aspartate)Zn(II) hydrate single crystals. Spin-lattice relaxation time T(1) and phase memory time T(M) were determined by the electron spin echo (ESE) method. The relaxation rate 1/T(1) increases strongly over 5 decades in the temperature range 4-55 K. Various processes and mechanisms of T(1)-relaxation are discussed, and it is shown that the relaxation is governed mainly by Raman relaxation processes with the Debye temperature Theta(D)=204 K, with a detectable contribution from disorder in the doped Cu(2+) ions system below 12 K. An analytical approximation of the transport integral I(8) is given in temperature range T=0.025-10Theta(D) and applied for computer fitting procedures. Since the Jahn-Teller distorted configurations differ strongly in energy (delta(12)=240 cm(-1)), there is no influence of the classical vibronic dynamics mechanism on T(1). Dephasing of the ESE (phase relaxation) is governed by instantaneous diffusion and spectral diffusion below 20 K with resulting rigid lattice value 1/T(0)(M)=1.88 MHz. Above this temperature the relaxation rate 1/T(M) increases upon heating due to two mechanisms. The first is the phonon-controlled excitation to the first excited vibronic level of energy Delta=243 cm(-1), with subsequent tunneling to the neighbor potential well. This vibronic-type dynamics also produces a temperature-dependent broadening of lines in the ESEEM spectra. The second mechanism is produced by the spin-lattice relaxation. The increase in T(M) is described in terms of the spin packets forming inhomogeneously broadened EPR lines.  相似文献   

13.
The thermal conductivity kappa of the heavy-fermion superconductor CeIrIn5 was measured as a function of temperature down to T(c)/8, for current directions parallel (J parallel c) and perpendicular (J parallel a) to the tetragonal c axis. For J parallel a, a sizable residual linear term kappa(0)/T is observed, as previously, which confirms the presence of line nodes in the superconducting gap. For J parallel c, on the other hand, kappa/T-->0 as T-->0. The resulting precipitous decline in the anisotropy ratio kappa(c)/kappa(a) at low temperature rules out a gap structure with line nodes running along the c axis, such as the d-wave state favored for CeCoIn5, and instead points to a hybrid gap of E(g) symmetry.  相似文献   

14.
We consider the nonanalytic temperature dependences of the specific heat coefficient, C(T)/T, and spin susceptibility, chi(s)(T), of 2D interacting fermions beyond the weak-coupling limit. We demonstrate within the Luttinger-Ward formalism that the leading temperature dependences of C(T)/T and chi(s)(T) are linear in T, and are described by the Fermi liquid theory. We show that these temperature dependences are universally determined by the states near the Fermi level and, for a generic interaction, are expressed via the spin and charge components of the exact backscattering amplitude of quasiparticles. We compare our theory to recent experiments on monolayers of He3.  相似文献   

15.
The magnon thermal conductivity kappa(mag) of the hole-doped spin ladders in Sr14-xCaxCu24O41 has been investigated at low doping levels x. The analysis of kappa(mag) reveals a strong doping and temperature dependence of the magnon mean free path l(mag), which is a local probe for the interaction of magnons with the doped holes in the ladders. In particular, this novel approach to studying charge degrees of freedom via spin excitations shows that charge ordering of the holes in the ladders leads to a freezing out of magnon-hole scattering processes.  相似文献   

16.
For binary compound semiconductor nanowires, we find a striking relationship between the nanowire's thermal conductivity kappa(nwire), the bulk material's thermal conductivity kappa(bulk), and the mass ratio of the material's constituent atoms, r, as kappa(bulk)/kappa(nwire) (alpha) (1+1/r)(-3/2). A significant consequence is the presence of crossovers in which a material with higher bulk thermal conductivity than the rest is no longer the best nanowire thermal conductor. We show that this behavior stems from a change in the dominant phonon scattering mechanism with decreasing nanowire size. The results have important implications for nanoscale heat dissipation, thermoelectricity, and thermal conductivity of nanocomposites.  相似文献   

17.
We present numerical results for the spin and thermal conductivity of one-dimensional (1D) quantum spin systems. We contrast the properties of integrable models such as the spin-1/2 XXZ chain against nonintegrable ones such as frustrated and dimerized chains. The thermal conductivity of the XXZ chain is ballistic at finite temperatures, while in the nonintegrable models, this quantity is argued to vanish. For the case of frustrated and dimerized chains, we discuss the frequency dependence of the transport coefficients. Finally, we give an overview over related theoretical work on intrinsic and extrinsic scattering mechanisms of quasi-1D spin systems.  相似文献   

18.
The temperature dependences of nuclear magnetization and relaxation rates are reviewed theoretically and experimentally in order to quantify the effects of temperature on NMR signals acquired by common imaging techniques. Using common sequences, the temperature dependences of the equilibrium nuclear magnetization and relaxation times must each be considered to fully understand the effects of temperature on NMR images. The temperature dependence of the equilibrium nuclear magnetization is negative because of Boltzmann's distribution for all substances at all temperatures, but the combined temperature dependences of the equilibrium magnetization and relaxation can be negative, weak or positive depending on the temperature (T), echo time (T(E)), repetition time (T(R)), and the temperature dependences of the relaxation times T(1)(T) and T(2)(T) in a pulse sequence. As a result, the magnitude of the NMR signal from a given substance can decrease, increase or stay somewhat constant with increasing temperature. Nuclear thermal coefficients are defined and predictions for spin echo and other simple sequences are verified experimentally using a number of substances representing various thermal and NMR properties.  相似文献   

19.
The thermal conductivity kappa of underdoped YBa2Cu3Oy was measured in the T-->0 limit as a function of hole concentration p across the superconducting critical point at pSC identical with 5.0%. The evolution of bosonic and fermionic contributions to kappa was tracked as the doping level evolved continuously in each of our samples. For p< or =pSC, we observe a T3 component in kappa which we attribute to the boson excitations of a phase with long-range spin or charge order. Fermionic transport, observed as a T-linear term in kappa which persists unaltered through pSC, violates the Wiedemann-Franz law, since the electrical resistivity varies as log(1/T) and grows with decreasing p.  相似文献   

20.
We report measurements of the ab-plane superfluid density n(s) (magnetic penetration depth lambda) of heavily underdoped films of YBa2Cu3O6+x, with T(C)'s from 6 to 50 K. We find the characteristic length for vortex unbinding transition equal to the film thickness, suggesting strongly coupled CuO2 layers. At the lowest dopings, T(C) is as much as 5 times larger than the upper limit set by the 2D Kosterlitz-Thouless-Berezinskii transition temperature calculated for individual CuO2 bilayers. Our main finding is that T(C) is not proportional to n(s)(0); instead, we find T(C) proportional to ns(1/2.3+/-0.4). This conflicts with a popular point of view that quasi-2D thermal phase fluctuations determine the transition temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号