首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A triplex-forming oligonucleotide (TFO), HPRT3, conjugated to a psoralen derivative, was designed to target a psoralen reaction site within the HPRT gene. HPRT3 bound with high affinity to a synthetic duplex target sequence. At a uniform UVA radiation dose, the ratio of psoralen monoadducts (MA) to interstrand crosslinks decreased and inverted with increasing TFO concentration. As the TFO concentration increased from 10 nm to 10 microm, the efficiency of psoralen MA formation remained relatively constant but the efficiency of interstrand crosslink formation increased several-fold. Neither shortening the TFO to reduce its dissociation constant nor altering the DNA sequences flanking the TFO binding site altered the concentration dependence of MA and crosslink yields. The psoralen photokinetics associated with 10 nm HPRT3 converted to those associated with 10 microm HPRT3 with the addition of other unrelated TFOs at 10 microm that do not specifically interact with the HPRT3 target sequence. Glycerol at concentrations of 0.5% (vol/vol) or higher also mimicked high TFO concentrations in enhancing crosslink formation. These results demonstrate that while psoralen may be targeted to react at a particular sequence by TFOs, photoreactivity associated with triplex formation is also modulated by sequence-independent factors that may affect the local macromolecular environment.  相似文献   

2.
UVA‐activated psoralens are used to treat hyperproliferative skin conditions due to their ability to form DNA photoadducts, which impair cellular processes and may lead to cell death. Although UVA (320–400 nm) is more commonly used clinically, studies have shown that UVB (280–320 nm) activation of psoralen can also be effective. However, there has been no characterization of UVB‐induced adduct formation in DNA alone. As psoralen derivatives have a greater extinction coefficient in the UVB region (11 800 cm?1 M?1 at 300 nm) compared with the UVA region (2016 cm?1 M?1 at 365 nm), a greater extent of adduct formation is expected. SELDI‐TOF, a proteomic technique that combines chromatography with mass spectrometry, was used to detect photoadduct formation in an alternating A–T oligonucleotide. 8‐Methoxypsoralen (8‐MOP) and DNA solutions were irradiated with either UVA or UVB. An adduct peak was obtained with SELDI‐TOF. For UVB‐activated 8‐MOP, the extent of adducts was three times greater than for UVA. HPLC ESI‐MS analysis showed that UVB irradiation yielded high levels of 3,4‐monoadducts (78% of total adducts). UVA was more effective than UVB at conversion of 4′,5′‐monoadducts to crosslinks (17% vs 4%, respectively). This report presents a method for comparing DNA binding efficiencies of interstrand crosslink inducing agents.  相似文献   

3.
We have developed novel methods for the preparation of multimicromole quantities of extremely pure, uniquely photoadducted psoralen-DNA cross-links, furan-side monoadducted DNA and pyrone-side monoadducts. Psoralen cross-linked and furan-side monoadducted DNA were produced by employing high intensity argon ion and krypton ion lasers as light sources. Pyrone-side monoadducts were prepared by base-catalyzed photoreversal of psoralen cross-links. The various psoralen-adducted DNA oligomers were efficiently purified by high performance liquid chromatography. These methods have permitted us to synthesize 4 mumol each of a self-complementary 8-mer d(GCGTACGC) 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) furan-side monoadduct and HMT cross-link. Preliminary nuclear magnetic resonance (NMR) data on the HMT cross-linked 8-mer d(GCGTACGC) have been obtained which confirmed the presence of the diadducted psoralen at the unique 5'TpA3' site. NMR data obtained from the 8-mer furan-side monoadduct revealed that the psoralen molecule is intercalated into the DNA double helix. Preliminary crystals of 8-mer cross-linked DNA molecule have been grown. Conditions for the growth of X-ray diffraction-quality crystals and the further analysis of these crystals are now in progress.  相似文献   

4.
The mechanism of the [2+2] cycloaddition photoreaction of psoralen and a DNA nucleobase, thymine, cornerstone of the furocoumarin-based PUVA (psoralen+UVA radiation) phototherapy, has been studied by the quantum-chemical multiconfigurational CASPT2 method. Triplet- and singlet-mediated mono- and diadduct formations have been determined to take place via singlet-triplet crossings and conical intersections, correlated with the initially promoted triplet or singlet states in different possible reactive orientations. Pyrone-side monoadducts are suggested to be formed in the triplet manifold of the system, and to be less prone to yield diadducts because of the properties of the monoadduct lowest triplet state and the minor accessibility of its excited singlet states. Furan-side monoadducts are better produced in the singlet manifold after reaching a conical intersection with the ground state of the system. From there, the absorption of a second photon would in this case trigger the formation of the diadduct. The proposed mechanisms enable rationalizing the phototherapeutic behavior of several furocoumarins.  相似文献   

5.
Abstract— The isolation and partial characterization of several photoadducts formed between 8-methoxypsoralen (8-MOP) and cytosine is described. The formation of these adducts was analysed in E. coli DNA containing 3H-labeled cytosine and/or 14C-labeled thymine, and in oligonucleotides of defined sequence. The major initial adduct has been identified as an 8-MOP cytosine monoadduct, most likely forming at the pyrone end of the 8-MOP molecule. Further irradiation converts this adduct to several other species, including both cytosine:cytosine and cytosine:thymine diadducts, as well as a number of derivative monoadducts. One isomer of the C:T diadduct appears to undergo a reversible isomerization under the conditions normally used to analyse adduct mixtures by HPLC. The isomerization can cause this adduct to exhibit a retention time on reversed-phase HPLC closely resembling either that of a thymine-thymine crosslink or a thymine monoadduct.  相似文献   

6.
Abstract The kinetics of psora/en photoinactivation of two distinct DNA viruses, bacteriophage λ and the papovavirus SV40 were investigated. When λ is treated with near ultraviolet light (UVA, 320-400 nm) and 4,5',8-trimethylpsoralen (TMP) at 1 μg/m/, the phage is rapidly inactivated. The survival curve exhibits a distinct shoulder indicating second or higher-order kinetics. SV40, on the other hand, is much more resistant to psoralen photoinactivation and the survival curve is linear, reflecting first order or'pseudo-first order'kinetics. Two TMP derivatives with increased solubility in aqueous solutions, 4'-aminomethyl-TMP and 4'-hydroxymethyl-TMP, were similarly tested. In both virus systems, TMP was much more effective. In experiments designed to examine the role of psoralen cross-link formation in virus inactivation, treated samples were irradiated a second time in the absence of drug. Since reirradiation causes a decline in λ infectivity as great as that observed in continuously irradiated samples, cross-links are implicated as the primary lethal event. In the case of SV40, the results of such a protocol suggest that both monoadducts and cross-links may be lethal or that monoadduct formation may be rate-limiting.  相似文献   

7.
Abstract— The flow linear dichroism properties of covalent adducts derived from the photochemical binding of various psoralen derivatives to salmon sperm DNA were investigated. The psoralens studied include bifunctional derivatives (8-methoxypsoralen,5-methoxypsoralen, tetrahydropyrido [3,4: 4',5'] psoralen) and monofunctional derivatives (pyrido [3,4-c] psoralen, 7-methylpyrido [3,4-c] psoralen, 3-carbethoxypsoralen). The orientation of the psoralen moieties (furan-side monoadducts) relative to the orientation of the DNA bases was determined. All of the furan-side monoadducts are characterized by a similar orientation, with mean angles between the psoralen moiety and the normals of the planes of the DNA bases ranging between 70° and values close—but not equal—to 90°. The results are consistent with a pseudo-intercalative adduct geometry, most probably involving stacking interactions with the DNA bases.  相似文献   

8.
Abstract— It has been recently shown that UVA (320–400 nm) irradiation of DNA in the presence of pyridopsoralens induces the formation of thymine cyclobutane dimers in addition to monoadducts. In this work, we measured the potency of a saturated pyridopsoralen to photosensitize DNA, despite its inability to covalently attach to DNA. First, from spectroscopic fluorescence measurements, we have shown that both analogs, saturated and unsaturated pyridopsoralens, namely 4',5'-dihydro-7-methyl-pyrido[3,4-clpsoralen (DH-MePyPs) and 7-methylpyrido[3,4-c]psoralen, exhibit a similar global affinity for DNA. Secondly, we demonstrated, by footprinting experiments, that exposure of a DNA sequence to 365 nm UV radiation in the presence of DH-MePyPs results in selective cyclobutane thymine dimerization. Thymines located in the immediate proximity of the 5'-TA-3' step are exclusively affected and the frequency of this photoprocess depends on flanking sequences. We thus probe a selective thymine dimer photosensitizer. Results are discussed in terms of drug affinity and physical properties of the helix at the binding site.  相似文献   

9.
The present report provides evidence that thymine dimerization can be UVA photosensitized at a tetranucleotide, 5′-TATT-3′, by a 7-methyl-pyrido(3, 4-c)psoralen monoadduct in DNA. The efficiency of the photoprocess depends on the tetranucleotide flanking sequences. These results demonstrate that one DNA lesion can originate the contiguous formation of a second type of lesion and emphasize the sequence-specific response to interaction of drugs with DNA. Results are related to the sensitivity of DNA to 1, 10-phenanthroline-cuprous ion complex nucleolytic activity and discussed in terms of the major role of local deformability of DNA in interaction with ligands.  相似文献   

10.
In the presence of near-UV radiation (UVA) furocoumarins (psoralens) photoinduce defined lesions in DNA, i.e. monoadducts and interstrand crosslinks. Their use in photochemotherapy (psoralen plus UVA (PUVA) treatment) and cosmetics raises questions concerning the repairability of these lesions and their genotoxic consequences. We have analysed the repair of psoralen photoadducts in cultured eukaryotic cells, such as yeast and mammalian cells, for furocoumarins of photochemotherapeutic interest. In yeast, the interaction of repair pathways differs in exogenous (plasmid) and endogenous (chromosomal) DNA. The order of mutagenic activity is 4,5',8-trimethylpsoralen greater than 5-methoxypsoralen greater than 8-methoxypsoralen greater than 7-methylpyrido[3,4-c]psoralen greater than 3-carbethoxypsoralen. The mutagenicity is dependent on psoralen functionality, concentration and bioavailability, maximal UVA dose, wavelength, dose (fluence) rate and presence or absence of chemical filters. It probably involves an inducible component. Chromosome breakage occurs during the repair period after PUVA treatment. It appears that the genotoxic effects of psoralens are produced by a specific arrangement of induced photolesions and the interaction of different repair systems.  相似文献   

11.
Human skin can be persistently photosensitized by topical application of aqueous 8-methoxypsoralen plus immediate irradiation with a non-erythemogenic dose of wavelengths above 380 nm. Re-exposure of skin thus sensitized to broadband UV-A produces phototoxic erythema 72-120 h later. The persistence of the photosensitization was demonstrated by phototoxic erythema after re-exposure up to 15 days after the first sensitizing irradiation. According to the concept that the first exposure induces primarily psoralen monoadducts, we consider this an investigation of psoralen monoadduct persistence. In contrast to several earlier studies, this sensitive method indicates that psoralen monoadducts may remain in human skin in vivo for more than 2 weeks after formation.  相似文献   

12.
Photochemical inactivation (PCI) of virus and bacteria in platelet concentrates (PC) has been demonstrated using 8-methoxypsoralen (8-MOP) and long-wavelength UV light (UVA). To study inactivation of blood-borne virus, we have employed duck hepatitis B virus (DHBV), a model for human hepatitis B virus. A specific hepatocyte culture infectivity assay, with PCR detection, could measure 5–6 log10 virus kill. The DHBV inactivation in PC was dependent on UVA dose, was enhanced when plasma was reduced from 100% to 20% and was limited by 8-MOP solubility in the reduced-plasma medium. Optimum conditions for PCI were 100 μg/mL 8-MOP in 20% plasma and 80% synthetic platelet storage medium. A radiolabeling assay for 8-MOP photoadducts in hepatocytes seeded into PC confirmed that DHBV inactivation reflected DNA modification and indicated that adduct formation was insensitive to minor variations in conditions. Kinetic modeling indicated that optimum adduct formation was a compromise between 8-MOP dark binding and optical transmittance and that plasma proteins competed for 8-MOP binding. The PCI results in various media correlated with corresponding DNA modification densities and were compared to statistical models incorporating DHBV characteristics and predictions of 8-MOP crosslink formation between DNA strands. Behavior was consistent with one or a small number of lethal modifications per DNA strand, including monoadducts, but probably not crosslinks alone. A minor subpopulation of DHBV was found to be, somewhat more difficult to inactivate, consistent with three-fold lower modification, due possibly to single-stranded DNA character or host repair of photoadducts.  相似文献   

13.
Targeted mutagenesis and gene knock-out can be mediated by triple helix-forming oligonucleotides (TFO) linked to mutagenic agents, such as psoralen. However, this strategy is limited by the availability of homopurine/ homopyrimidine stretches at or near the target site because such sequences are required for high-affinity triplex formation. To overcome this limitation, we have tested TFO conjugated to psoralen via linker arms of lengths varying from 2 to 86 bonds, thereby designed to deliver the psoralen at varying distances from the third strand binding site present at the 3'end of the supFG1 mutation reporter gene. Following triplex formation and UVA irradiation, mutations were detected using an SV40-based shuttle vector assay in human cells. The frequency and distribution of mutations depended on the length of the linker arm. Precise targeting was observed only for linker arms of length 2 and 6, which also yielded the highest mutation frequencies (3 and 14%, respectively). Psoralen–TFO with longer tethers yielded mutations at multiple sites, with the maximum distance from the triplex site limited by the linker length but with the distribution within that range influenced by the propensity for psoralen intercalation at A:T base-pair-rich sites. Thus, gene modification can be extended beyond the site of third strand binding but with a decrease in the precision of the targeting.  相似文献   

14.
Abstract— The formation of 8-methoxypsoralen-DNA monoadducts and cross-links is presumed to be responsible for the efficacy of photochemotherapies that employ 8-methoxypsoralen activated with long-wavelength ultraviolet radiation (UVA,320–400 nm). In this report it is shown that 8-methoxypsoralen can also be activated with visible light (419 nm). Bovine aorta smooth muscle cells were treated with 8-methoxypsoralen (1000 ng/mL) and 419 nm light (up to 12 J/cm2). Cellular DNA was isolated, hydrolyzed using nucleolytic enzymes and then analyzed by reversed-phase high-performance liquid chromatography. The primary effect of using visible light instead of long-wavelength ultraviolet radiation is a more than 10-fold reduction in the extent of cross-link formation. Because the extent of monoadduct and cross-link formation has not been routinely measured in experiments in which cellular assays have been performed, it is difficult to correlate cell response to the presence of a particular type of 8-methoxypsoralen photoadduct (monoadduct or cross-link). Thus, the use of visible light allows the study of cells containing nearly 100% monoadducts. In addition, the reduction in cross-link formation when visible light is used to activate the compound may also reduce the mutagenicity of 8-methoxypsoralen and hence enhance its therapeutic efficacy.  相似文献   

15.
The results of molecular mechanical calculations on intercalation complexes of 3-carbethoxypsoralen, 5-methoxypsoralen, 8-methoxypsoralen, 7-methylpyrido[3,4-c]psoralen (MepyPs) and 7-methylpyrido[4,3-c]psoralen (2N-MePyPs) with the double stranded duodecanucleotide d(CGCGATATCGCG)2 are presented. In the energy-minimized structures, the psoralens are intercalated with their plane orthogonal to the helix axis. Stacking interactions between the furan ring of the psoralen and the adjacent bases are maximized in most derivatives studied, whereas the effect of the various substituents of the psoralen ring is to specifically push part of the molecule towards either the minor or the major groove, preventing a symmetrical intercalation (with respect to the two strands of the DNA). The relative position of the psoralen ring and of the adjacent thymine foreshadows the formation of furan-side monoadducts in 3-CPs, MePyPs and 2N-MePyPs, whereas the formation of a pyrone-side monoadduct appears as geometrically more favourable in 5-MOP and both furan- and pyrone-side monoadducts can be geometrically envisaged in 8-MOP. A good correlation therefore exists between the more or less favourable equilibrium geometries and the experimentally observed photoreactions. The present study is the first attempt to characterize the geometrical parameters as part of a complex set of geometrical, dynamical and excited state parameters governing the overall DNA-psoralen photoreaction.  相似文献   

16.
Photochemical and photobiological properties of a new isoster of psoralen, 4,4',5'-trimethyl-8-azapsoralen (4,4',5'-TMAP), have been studied. This compound shows a high DNA-photobinding rate, higher than that of 8-methoxypsoralen (8-MOP), forming both monoadducts and inter-strand cross-links. The yield of cross-links, however, is markedly lower than that of 8-MOP. Antiproliferative activity of 4,4',5'-TMAP, in terms of DNA synthesis inhibition in Ehrlich ascites tumor cells, is higher than that of 8-MOP. Mutagenic activity on E. coli WP2 R46+ cells appeared similar to or even lower than that of 8-MOP. This new compound applied on depilated guinea pig skin and irradiated with UVA did not show any skin-phototoxicity. On the basis of these properties 4,4',5'-TMAP appears to be a potential photochemotherapeutic agent.  相似文献   

17.
Abstract— Survival curves were obtained for DNA repair-deficient strains of Escherichia coli K-12 ( polA1, uvrB5 , and recA56 ) exposed to near-ultraviolet radiation [black light (BL)] in the presence of the DNA cross-linking agent 8-methoxypsoralen (8-MOP) or in the presence of photosensitizers forming primarily monoadducts with DNA [angelicin; 3-carbethoxypsoralen (3-CPs); 5,7-dimethoxycoumarin (DMC)], and after exposure to blue light (BluL) in the presence of 8-MOP or 3-CPs. An interpretation of these data suggests that DNA polymerase I is required for the major pathway of monoadduct repair, but appears to play little or no role in the repair of 8-MOP cross-links. The uvrB and recA strains were very sensitive, both to the cross-linking agent and to the monoadduct formers. The markedly different results for BL plus DMC or 3-CPs compared to angelicin suggests that the DMC and 3-CPs monoadducts are repaired by a different mechanism than are the angelicin monoadducts, or else DMC and 3-CPs undergo photochemical side reactions that produce DNA lesions other than the expected monoadducts. From photochemical evidence, we predicted that fewer 8-MOP monoadducts should be converted to cross-links by BluL vs BL; this appears to be the case. 3-CPs showed dramatically different biological results when irradiated with BL vs BluL, suggesting that 3-CPs may form more types of photoproducts than the expected monoadducts; BluL, however, appears to favor monoadduct formation.  相似文献   

18.
Abstract— New psoralen derivatives have been synthesized in order to enhance their affinity towards DNA. The spectral properties (absorption, fluorescence emission, fluorescence quantum yield) and the photostability of pyrido[3,4-c]psoralen are first reported. The drastic changes observed in the solubility and in the fluorescence emission when these compounds are added to native DNA give evidence of the formation of non covalent dark complexes. Upon UV irradiation (365 nm) of the complexes, a photobinding occurs. Heat denaturation and renaturation experiments of modified DNA show that only monoadducts are formed. From the analysis of their fluorescence properties the involvement of the 4', 5' double bond is assumed. The monofunctional character has also been established for psoralens having a fused pyridine ring in the 4', 5' site. On the opposite, a fused tetrahydropyrido group in the 4', 5' site is inefficient to inactivate this reactive site.  相似文献   

19.
Abstract— The formation of singlet molecular oxygen (1O2) by sensitization of the furocoumarins 5-methoxypsoralen (5-MOP), 8-methoxypsoralen (8-MOP) and psoralen complexed with DNA was investigated. From the results it is concluded that 5-MOP complexed with native DNA is able to generate 1O2, even in a larger extent than 5-MOP free in solution. Also, with 8-MOP and especially with psoralen, 1O2 formation by the complexed compound could be observed. The 1O2 formation sensitized by covalently bound furocoumarin was demonstrated with psoralen as a model compound. 4',5'-Dihydropsoralen, a model compound for the UVA light absorbing 4',5'monoadducts of furocoumarins to DNA, is also able to generate 1O2.  相似文献   

20.
The red-shift of furocoumarin action spectra, compared with their absorption spectra, has been investigated. An action spectrum for 8-methoxypsoralen (8-MOP) monoadduct formation in the yeast Candida albicans has been determined. The yeast cells were initially exposed to sublethal doses of monochromatic UVA at different wavelengths. Monoadduct formation was monitored by growth inhibition induced, after washing out any unbound 8-MOP, by re-irradiation with a constant second (non-lethal) dose of 330 nm radiation. A comparison between this action spectrum and the absorption spectrum of the dark complex of 8-MOP and DNA was made. In addition, the action spectra of monoadduct formation of five monofunctional compounds including a coumarin derivative have been determined. These action spectra were compared with their respective DNA dark complex absorption spectra. In general, the peaks of the furocoumarin DNA dark complexes show a red-shift when compared with the free furocoumarin molecule and the action spectra show peaks which correspond with the peaks of the dark complexes. Such data indicate that the DNA dark complex is the chromophore for growth inhibition in yeast rather than the free furocoumarin. The similarity of the 8-MOP monoadduct formation action spectrum and 8-MOP action spectra suggests that spectral dependence for the photobiological effects (including the red-shift) is dependent on monoadduct formation rather than, as previously suggested by several authors, crosslink formation. The action spectrum for the coumarin derivative 4-methyl N-ethylpyrrolo (3,2-g) coumarin (PCNEt) correlated well with the free molecule absorption spectrum rather than DNA dark complex indicating that the free molecule is the chromophore.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号