首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The graft polymerization of styrene onto high-density polyethylene films was carried out by γ-irradiation in the vapor phase. Two methods were used for grafting in these experiments: a preirradiation method and a simultaneous irradiation method. The effects of these grafting methods on the reaction mechanism of grafting and on the properties of the grafted samples were investigated. The amounts of styrene homopolymer in the grafted samples is under 2% in the case of the preirradiation method and above 10% in the case of the simultaneous irradiation method. The activation energies were calculated to be 18 kcal/mole for grafting in the preirradiation method and 15 kcal/mole for weight increase of polyethylene films in styrene vapor. The difference in the dimensional expansion between in the direction of stretching and the direction prependicular to it is smaller with preirradiation grafting than with grafting by the simultaneous irradiation method. Differential thermal analysis of the grafted films shows an endothermic peak due thermal decomposition which decreases gradually from 450°C to 415°C with increase in degree of grafting from 30 to 60%. The lowering of this peak temperature appears at a lower degree of grafting when the preirradiation method is used. On the basis of these results, it is concluded that the reaction rate of radiation-induced grafting in the vapor phase depends closely upon the processes of adsorption, dissolution, and diffusion of styrene monomer in polyethylene films; in the case of simultaneous irradiation method, the reaction proceeds comparatively uniformly in the amorphous region, while in the case of the preirradiation method, the reaction proceeds mainly at the boundary of the crystalline and amorphous regions.  相似文献   

2.
The method of investigation reported in previous papers was applied to preirradiation methods of reaction in vapor and in liquid. The absorption dose was varied from 2 to 0.1 Mrad. The monomer concentrations during reactions were determined gravimetrically. The patterns of increase of the degree of grafting did not change as the dose was varied in the liquid but changed considerably with dose in the vapor. The monomer concentration during the reaction did not vary with dose in the liquid but did so in the vapor. A model calculation was applied and improved to make the monomer concentration agree with that in the experiment. An attempt was made to describe the mechanism involved. There were some differences between the calculated values and the experimentally obtained ones, but the outline of the reaction mechanism was explained satisfactorily.  相似文献   

3.
The investigation method reported in earlier articles was applied to preirradiation methods of the reaction of low-density polyethylene (LDPE) in liquid and vapor and compared with high-density polyethylene (HDPE). Monomer concentrations during reactions and monomer feed rates were determined gravimetrically. Increasing patterns of the degree of grafting were obtained and compared. Monomer concentration during the reactions was lower in LDPE than HDPE and radical decay was more rapid in LDPE. A model calculation was applied to this experiment and a schematic explanation was attempted. The differences between the reaction mechanisms of HDPE and LDPE are explained.  相似文献   

4.
Hydrophilic carboxyl-containing fluoromembranes were obtained by preirradiation grafting of acrylic acid onto ethylene-tetrafluoroethylene film. The dependence of the grafting reaction on temperature, monomer concentration, nature and concentration of inhibitor, crosslinking agent, solvent, and on the preirradiation dose was investigated. The grafting rates increase with temperature, whereas the saturation degree of grafting (SDG) decreases. Addition of inhibitor minimizes homopolymerization and at the same time hinders the grafting reaction. The SDG increases markedly with monomer concentration until it reaches a maximum and thereafter decreases. The grafting rates increase with preirradiation dose. Addition of crosslinking agent initially decreases the SDG, and thereafter increases. The highest grafting rates are obtained using water as solvent followed by methanol and ethanol. The results are discussed on the basis of various parameters: interaction between monomer diffusibility and the viscosity of the monomer bath, the mutual reactivity of monomer, and the crosslinking agent. An agreement is observed between the values of the electrical resistance and the saturation degree of grafting. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
To investigate the mechanism of radiation-induced grafting in this system, the increase of monomer concentration in the polyethylene film in styrene vapor was evaluated by measuring the weight increase and formulated to be V([M] ? [M]). The decay of radical concentration was also measured by ESR and the rate constant of the decay was determined. The alkyl type radical was affected only a little by styrene, while the allyl type radical was much affected by styrene. A new computer investigation method was proposed to clarify the reaction mechanism. The data obtained were substituted into differential equations and used to calculate the pattern of increase of the degree of grafting for the preirradiation method with reaction in the vapor phase. Results of these calculations suggest that only allyl type radicals induce grafting reactions and that the grafting reaction seldom occurs in the region of grafted polystyrene.  相似文献   

6.
Graft copolymerization of maleimide onto polyethylene and ethyl cellulose films by using its sublimation vapor was carried out under ultraviolet irradiation in the presence or absence of air; the effect of air or additives on the grafting reaction and on the nature of the grafted films was investigated. The extent of grafting gradually approached a fixed value, in spite of the continuous ultraviolet irradiation. Air retarded the grafting reaction but did not suppress the reaction nor alter the final extent of grafting. Benzoquinone showed no inhibiting effect on the grafting. The grafted polymaleimide was found to be amorphous, even though ultraviolet irradiation produces a highly crystalline homopolymer in the solid phase as well as in the liquid phase. The results were discussed in comparison with those of the vapor-phase grafting under γ-ray irradiation; the reaction is attributed to the vapor–crystal equilibrium of monomer and to the formation of short-chain crosslinks.  相似文献   

7.
Graft polymerization of acrylonitrile onto polypropylene (PP) monofilament was carried out by a preirradiation method using a 60Co gamma radiation source. The influence of synthesis conditions, such as preirradiation dose, reaction time, monomer concentration, reaction temperature and additives was determined. The grafting was considerably influenced by the instantaneous swelling of the monofilament in the reaction mixture during the course of the grafting process. The order of dependence of the rate of grafting on monomer concentration was found to be 1.04. The nature of the medium of the grafting and the additives had profound influence over the grafting reaction. The accelerative effects of solvent medium on the grafting were higher in methylethyl ketone (MEK) and dimethylformamide (DMF) as compared to methanol. At the same time, partial replacement of DMF with water led to acceleration in the grafting with peak maxima at 20% solvent composition. The addition of a small amount of sulfuric acid to the reaction mixture also resulted in a significant acceleration of the degree of grafting.  相似文献   

8.
Some properties of the membranes obtained by preirradiation grafting of acrylic acid onto poly(tetrafluoroethylene-perfluorovinyl ether) copolymer (PFA) films have been investigated. The dimensional change caused by grafting and swelling behavior, water uptake, electrical conductivity, and mechanical properties of the grafted films were found to increase as the grafting proceeds. The influence of the preparation conditions (such as preirradiation dose, monomer concentration, grafting temperature, and film thickness) on those properties was studied. These properties were found to be dependent mainly on the degree of grafting regardless of grafting conditions, except at higher monomer concentration (>40 wt %). The electric conductivity and mechanical properties for the membranes obtained at higher AAc concentrations were lower than those obtained at lower ones. Analysis by x-ray microscopy of the grafted films revealed that the grafting begins at the part close to the film surface and proceeds into the central part with progressive diffusion of monomer to give finally homogeneous distribution of the electrolytes in the whole bulk of the polymer. The membranes show good electrochemical and mechanical properties which make them acceptable for practical use as cation-exchange membranes.  相似文献   

9.
Preirradiation polymerization of the styrene–silica gel system was studied in detail. Both graft polymers and homopolymers have bimodal GPC spectra. High molecular weight peaks were formed in a radical mechanism and the low molecular weight peaks were formed in a cationic mechanism as same as those in the simultaneous irradiation polymerization. The rate of formation of the low molecular weight peaks was very high compared with that of the high molecular weight peaks. Monomer conversion and percent grafting leveled off at about 1–2 Mrad. Radiation dose dependence of the four peaks were different from each other. Monomer conversion and percent grafting decreased as the preheating temperature of silica gel increased. The amount of the low molecular weight peaks of graft polymers depended on the number of silanol groups, as in the case of the simultaneous irradiation polymerization. A reaction mechanism for the preirradiation polymerization is proposed based on the results obtained.  相似文献   

10.
The radiation-induced graft polymerization of styrene to poly(vinyl chloride) (PVC) was investigated. Relations between the rate of grafting and the dose rate when the polymer is irradiated in liquid monomer or in monomer vapor, and between the rate of grafting and monomer concentration absorbed in the polymer have been investigated. The rate of grafting in monomer vapor was found to be far larger than that in liquid monomer. A high rate of grafting in monomer vapor was thought to result from a lower concentration of monomer in PVC during irradiation. An experiment carried out on PVC containing the monomer at various concentrations showed that the rate is largest at a monomer concentration of about 3.5 mole/l. and is smaller for higher and lower concentrations. On the assumption that the theory of homogeneous homopolymerization can be applied to this grafting reaction, the value of kp2/kt has been obtained, where kp and kt are propagation constant and termination constant, respectively. The value of kt greatly increases when the monomer concentration exceeds 3.5 mole/l. This increase of kt can be accounted for if it is assumed that the monomer absorbed in the polymer works as a plasticizer and increases the molecular motion of the polymer. A measurement of the elastic modulus of PVC containing the monomer at various concentrations showed that this is, in fact, the case.  相似文献   

11.
Radiation‐induced graft co‐polymerization of methacrylic acid and N‐vinyl‐2‐pyrrolidone mixture from poly(ethylene terephthalate) knitted fabrics were conducted using a preirradiation method. The influence of the graft conditions, such as irradiation dose, reaction time, monomer concentration and temperature on the degree of grafting was determined. It was found that there is a limiting irradiation dose of 40 kGy above which the degree of grafting does not increase. An increase in the monomer concentration from 20 to 40% and an increase in temperature from 60 to 80°C gave a higher initial rate of grafting as well as higher equilibrium graft levels. The characterization of the fabric was carried out by attenuated total reflectance infrared spectroscopy (ATR‐IR), X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The grafted fabric surface, carrying negatively charged carboxylate ions, was shown to attract collagen, being positively charged to provide bioreceptive surfaces. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A kinetic study has been made on the preirradiation grafting of acrylic acid (AAc) onto poly(tetrafluoroethylene–perfluorovinyl ether) (PFA) film. The effect of grafting conditions was investigated. The dependences of the grafting rate on preirradiation dose and monomer concentration was found to be of the order of 0.5 and 1.3, respectively. The final degree of grafting was found to increase with dose and monomer concentration. However, it decreases as the grafting temperature increase. The overall activation energy for the graft polymerization was calculated from Arrhenius plots to be 5.6 kcal/mol. The activation energy for this grafting system was found to be independent of preirradiation dose used in the range from 10 to 100 kGy. The relationship between the grafting rate and film thickness gave a negative first-order dependence. The results suggest that the grafting proceeds by radical mechanism with bimolecular termination of growing chain radicals. It was reasonable concluded that this grafting proceeds from the surface to the center of film with progressive monomer diffusion through the grafted layer which swells in the monomer solution.  相似文献   

13.
Radiation-induced grafting of dimethylaminoethylmethacrylate onto poly(propylene) films by preirradiation method in presence of air was investigated. The effects of monomer concentration, preirradiation dose and temperature on grafting value as well as the effect of grafting value on crystallinity of the modified polymer were determined.  相似文献   

14.
The vapor-phase graft copolymerization of vinyl chloride and vinylidene chloride onto polypropylene fibers was studied by a simultaneous γ-irradiation technique. The weight increase during irradiation due to the grafting in monomers at constant vapor pressure was measured by a sensitive spring balance. The sorption of both monomers onto unirradiated polypropylene fibers was also measured. The graft copolymerization reaction was suppressed with increasing irradiation temperature, and the overall activation energies of grafting were negative in both monomers, ?2.4 kcal/mole for vinyl chloride and ?6.3 kcal/mole for vinylidene chloride. The initial rate of grafting increased linearly with the vapor pressure of monomers. The above dependence was found to parallel the sorption of monomers on polypropylene fibers. The reaction rates were proportional to the 0.9 power of the dose rate in both monomers. The relationship between the grafting and the sorption of monomers was discussed on the basis of kinetics.  相似文献   

15.
Acrylic acid was grafted onto poly(ε-caprolactone) (PCL) films by using electron beam (EB) preirradiation technique. The effect of reaction time, monomer concentration, radiation dose, time between irradiation and grafting, radiation atmosphere, and polymer crystallinity on the extent of grafting were studied. Silver and tin ions were attached to the grafted chains in order to study the grafting process. The irradiation in air was initially more rapid, but the final extent of grafting was the same when irradiated in nitrogen atmosphere. Maximum grafting extents exceeding 400% could be obtained. The optimal grafting was obtained at an acrylic acid to water ratio of 30 : 70. The grafting process could be initiated at a dose as low as 12 kGy. The grafting process proved to start at the surface and was extended into the bulk with time. The ability to form crystals was reduced as the grafting extent increased. The water uptake of the poly(ε-caprolactone)-graft-poly(acrylic acid) was increasing with increasing grafting extent, but reached a maximum of ca 100% for all grafting extents above 85%. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1805–1812, 1998  相似文献   

16.
An attempt has been made to graft a hydrophylic monomer of N,N.dimethyl acrylamide (DMAA) onto natural rubber (NR) tube by simultaneous, per-oxidation and preirradiation grafting techniques. It was found that the grafting by simultaneous grafting technique results a maximum 29 wt% degree of grafting and by peroxidation and preirradiation techniques, results the maximum 42 wt% and 13 wt% degree of grafting, respectively. It was concluded that the peroxidation technique is the most appropriate to obtain a high degree of grafting in radiation copolymerization of DMAA onto NR.  相似文献   

17.
Graft copolymers of nylon-6 and acrylonitrile have been prepared by the direct grafting technique. Carrying out the liquid phase direct irradiation grafting in air in the presence of a redox salt made the technique more efficient. The effects of reaction parameters (such as total dose, solvent type and composition) and monomer concentration on the mutual grafting in the liquid and vapour phases were studied. The results indicate that, if all reaction parameters were fixed, the vapour phase technique gives rise to lower grafting yield than the liquid phase method.  相似文献   

18.
Preirradiation grafting of N-vinylpyrrolidone (NVP) onto poly(tetrafluoroethylene) (PTFE) and poly(tetrafluoroethylene-hexafluoropropylene) (FEP) films was investigated. The influence of grafting parameters such as preirradiation dose, monomer concentration, and grafting temperature on the rate and grafting yield was studied. Different solvents were used for diluting the monomer and it was found that the aqueous monomer solution at a concentration of 80 wt% was suitable for this grafting system. However, the graft polymerization of NVP in benzene terminated within a short time without significant grafting yield. The dependence of the grafting rate on preirradiation dose and monomer concentration was 1.2 and 1.07 order, respectively, for grafting onto PTFE films and 1.1 and 1.2 order, respectively, for grafting onto FEP films. Arrhenius plots for grafting onto PTFE films showed a breaking point at ca. 35°C and the overall activation energies were calculated as 23.6 and 9.0 Kcal/mol below and above 35°C, respectively. For grafting onto FEP films, however, no break was observed in the Arrhenius plots; the overall activation energy was 11.9 Kcal/mol. The swelling behavior and electric resistance of the grafted materials were investigated.  相似文献   

19.
With high-density polyethylene (HDPE) and low-density polyethylene (LDPE) films the grafting reactions were performed by the preirradiation method. By holding the total absorption dose constant irradiation time was varied. The initial rate of grafting decreased with irradiation time. The relative concentration of alkyl radical in the polyethylene film also decreased with irradiation time, but the relative concentration of allyl increased. The differences in the ESR spectrum before and after the introduction of styrene indicate that the allyl-type radical reacted with styrene. To elucidate these results the allyl radical in the amorphous region was considered.  相似文献   

20.
The radiation-induced grafting of styrene vapor to low-density polyethylene film of 0.063 mm thickness was studied at 23°C at a dose rate of 1.98 × 104 rad/hr. The concentration C of monomer in the film was measured as a function of pre-irradiation exposure time to monomer vapor. The concentration-dependent diffusion coefficient of styrene in polyethylene was calculated to be 4.9 × 10?9 exp {2.0C/C0} cm2/sec, where C0 is the saturation concentration of styrene in the film, and a linear boundary diffusion coefficient for styrene vapor into polyethylene film was found to be 2.0 × 10?7 cm/sec. The rate of grafting was determined as a function of the concentration of styrene absorbed in the film. The maximum graft yield was obtained with an initial styrene concentration in the film of 4 wt-%. Under conditions of low initial monomer concentration, the grafting rate increases with irradiation time. The results are compared with previously published data on grafting of polyethylene from methanol–styrene solutions. They are explained in terms of the viscosity of the amorphous region as a function of styrene content and the resistance to the diffusion of monomer at the film–vapor interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号