首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.

The interaction of Bu2Sn(OPri)2 with a trifunctional tetradentate Schiff base (LH3) (where H3L = HOC6H4CH═NCH3C(CH2OH)2) yields the precursor complex Bu2Sn(LH) 1, which, on equimolar reactions with different metal alkoxides [Al(OPri)3, Bu3Sn(OPri), Ge(OEt)4]; Al(Medea)(OPri) (where Medea = CH3N- (CH2CH2O)2); and Me3SiCl in the presence of Et3N], affords, respectively, the complexes Bu2Sn(L)Al(OPri)2 2, Bu2Sn(L)Al(Medea) 3, Bu2Sn(L)Bu3Sn 4, Bu2Sn(L)Ge(OEt)3 5, and Bu2Sn(L)SiMe3 6. The reactions of 2 with 2,5-dimethyl-2,5-hexanediol in a 1:1 ratio and with acetylacetone (acacH) in a 1:2 molar ratio afforded derivatives Bu2Sn(L)Al(OC(CH3)2CH2CH2C(CH3)2 O) 7 and Bu2Sn(L)Al(acac)2 8, respectively. All of the derivatives 18 have been characterized by elemental analyses, molecular weight measurements, and spectroscopic [IR and NMR (1H, 119Sn, 29Si, and 27Al)] studies.  相似文献   

2.
Complexes of the types VO(L)(R-deaH), VO(R-dea)(LH), and VO(L)(OGOH)[L = deprotonated form of N-(1-hydroxyethyl) naphthaldimine; R-dea = deprotonated form of a N-substituted diethanolamine, with R = H or Ph; G = CH2CH2, CHMeCHMe, CMe2CMe2, CHMeCH2CMe2, CMe2CH2CH2CMe2] have been prepared by the equimolar reactions of VO(OPr i )3, LH2, and an appropriate diethanolamine or glycol in benzene. All of these coloured solid complexes have been characterised by elemental (C, H, N, and V) analyses and by spectroscopic (i.r., electronic, 1H-, 51V-n.m.r) studies. The relative lability of the hydroxy group(s) of N-(1-hydroxyethyl)naphthaldiamine, diethanolamine, and glycol has also been investigated.  相似文献   

3.
Reaction of Ti(OPri)4 with 2-methyl-2,4-pentanediol [HOGOH, where G = CMe2CH2CH(Me)] in 1?:?3 M ratio under reflux afforded the monomeric [Ti(OGO)(OGOH)2] (1), which on further reactions with [Al(OPri)3] or [Nb(OPri)5] in 1?:?1 and 1?:?2 M ratios afforded heterometallic derivatives, [Ti(OGO)3{M(OPri)n?2}] and [Ti(OGO)3{M(OPri)n?1}2] [where M = Al (n = 3), Nb (n = 5)], respectively. Similar reactions of Zr(OPri)4?PriOH with a number of glycols [HOGOH, where G = CH(Me)CH(Me), CMe2CMe2, CMe2CH2CH(Me)] yielded dimeric [Zr2(OGO)2(OGOH)4]. [Zr2(OGO)6{M(OPri)n?2}2] and [Zr2(OGO)4(OGOH)2M(OPri)n?2] [M = Al (n = 3), Ti (n = 4), Nb (n = 5)] were prepared by 1?:?2 and 1?:?1 reactions, respectively, of [Zr2(OGO)2(OGOH)4] with Al(OPri)3, Ti(OPri)4, or Nb(OPri)5. Surprisingly, a 1?:?2 reaction of [VO(OPri)3] with 2,2-diethyl-1,3-propanediol in benzene followed a different reaction and produced a neutral tetranuclear derivative [V4(O)4(μ-OCH2CEt2CH2O)2(OCH2CEt2CH2O)4] (18). All of these derivatives were characterized by elemental analysis, molecular weight measurements, FT-IR, and 1H NMR (and wherever possible, by 27Al or 51V NMR) spectroscopic studies. The derivatives [Zr2(OCMe2CH2CH(Me)O)2(OCMe2CH2CH(Me)OH)4] (9 and 18) were additionally characterized by single-crystal X-ray structure analysis.  相似文献   

4.
Reactions of Cp2ZrCl2 with homometallic complexes of aluminium containing one residual hydroxy group Al(OGO)(OGOH) and Al(L)(OGOH) [where G=G1=CMe2CMe2 (1a); G=G2=CMe2CH2CHMe (1b); G= G3=CMe2CH2CH2CMe2 (1c) and L=L1=OC6H4CH=NCH2CH2O, G=G1 (2a); L=L1, G=G2 (2b); L=L1, G=G3 (2c); L=L2=OC10H6CH=NCH2CH2O, G=G1 (2d); L=L2, G=G2 (2e); L=L2, G=G3 (2f)] in THF using Et3N as HCl acceptor affords novel heterobimetallic compounds of the types Al(OGO)2Zr(Cl)Cp2 and Al(L)(OGO)Zr(Cl)Cp2, respectively. All of these derivatives have been characterised by elemental analyses, molecular weight measurements, and spectroscopic [IR, NMR (1H and 27Al)] studies.  相似文献   

5.
Interesting varieties of heterobimetallic mixed-ligand complexes [Zr{M(OPri) n }2 (L)] (where M = Al, n = 4, L = OC6H4CH = NCH2CH2O (1); M = Nb, n = 6, L = OC6H4CH = NCH2CH2O (2); M = Al, n = 4, L = OC10H6CH = NCH2CH2O (3); M = Nb, n = 6, L = OC10H6CH = NCH2CH2O (4)), [Zr{Al(OPri)4}2Cl(OAr)] (where Ar = C6H3Me2-2,5 (5); Ar = C6H2Me-4-Bu2-2,6 (6), [Zr{Al(OPri)4}2(OAr)2] (where Ar = C6H3Me2-2,5 (7); Ar = C6H2Me-4-Bu2-2,6 (8), [Zr{Al(OPri)4}3(OAr)] (where Ar = C6H3Me2-2,5 (9); Ar = C6H3Me2-2,6 (10), [ZrAl(OPri)7-n (ON=CMe2) n ] (where n = 4 (11); n = 7 (12), [ZrAl2(OPri)10-n (ON=CMe2) n ] (where n = 4 (13); n = 6 (14); n = 10 (15) and [Zr{Al(OPri)4}2{ON=CMe(R)} n Cl2–n] [where n = 1, R = Me (16); n = 2, R = Me (17); n = 1, R = Et (18); n = 2, R = Et (19)] have been prepared either by the salt elimination method or by alkoxide-ligand exchange. All of these heterobimetallic complexes have been characterized by elemental analyses, molecular weight measurements, and spectroscopic (I.r., 1H-, and 27Al- n.m.r.) studies.  相似文献   

6.
Equimolar reactions of BuSn(OPri)3 with diethanolamines, RN(CH2CH2 OH) 2 (abbreviated as RdeaH2, where R = H or Me), afford dimeric isopropoxo-bridged six-coordinate butyltin(IV) complexes [{Bu(η3-Rdea)Sn(μ-OPri)}2] (R = H ( 1 ), Me ( 2 )). Interactions between BuSn(OPri)3 and diethanolamines (RdeaH2) in a 1:2 molar ratio yield monomeric derivatives of the type [BuSn(Rdea)(RdeaH)] (R = H ( 3 ), R = Me ( 4 )). These homometallic complexes on 1:1 reactions with an appropriate metal alkoxide form monomeric heterobimetallic complexes of the type [BuSn (Rdea)2 {M(OR′)n}] (R = H, M = Al, R′ = Pri, n = 2 ( 5 ); R = H, M = Ti, R = Pri, n = 3 ( 6 ); R = H, M = Zr, R′ = Pri, n = 3 ( 7 ); R = Me, M = Al, R′ = Pri, n = 2 ( 8 ); R = Me, M = Ti, R′ = Pri, n = 3 ( 9 ); R = Me, M = Ge, R′ = Et, n = 3 ( 10 )). The driving force behind this work was (i) to explore the utility of homometal complexes ( 1 ) ( 4 ) in assembling a metal alkoxide fragment via a condensation reaction and (ii) to gain insights into the structures of new compounds by NMR spectral data. All of these derivatives have been characterized by elemental analysis, spectroscopic (IR, NMR; 1H, 27Al, and 119Sn) studies, and molecular weight measurements. 119Sn NMR spectral studies indicate that both the homometallic ( 3 ) and ( 4 ) and heterobimetallic ( 5 ) ( 9 ) complexes exist in a solution in an equilibrium of six- and five-coordinated tin(IV) species.  相似文献   

7.
An entirely new class of heterobimetallic homoleptic glycolate complexes of the type Nb(OGO)3{Ta(OGO)2} [where G=CMe2CH2CH2CMe2 (G1) (3); CMe2CH2 CHMe(G2) (4); CHMeCHMe (G3) (5); CH2CMe2CH2 (G4) (6); CMe2CMe2(G5) (7); CH2CHMeCH2 (G6) (8); CH2CEt2CH2 (G7) (9); CH2CMe(Prn)CH2 (G8) (10)] have been prepared by the reactions of Nb(OGO)2(OGOH) [G=G1 (1a); G2 (1b); G3 (1c); G4 (1d); G5 (1e); G6 (1f); G7 (1g); G8 (1h)] with Ta(OGO)2 (OPri) (G=G1 (2a); G2 (2b); G3 (2c); G4 (2d); G5 (2e) G6 (2f); G7 (2g); G8 (2h). In addition to the novel derivatives (2)(10), our earlier investigations on heterobimetallic glycolate-alkoxide derivatives have been extended to derivatives of the type Nb(OGO) [where M=A1 n=3, G=G3 (11);G4 (12); G6 (13) G7 (14); Gs (15); G9=CH2CH2CH2 (16) and M=Ti (n=4, G=G4) (17), Zr(n=4,G=G4) (18)], which are conveniently prepared by the reactions of metalloligands Nb(OGO)2(OGOH) [G=G3 (1c); G4 (1d); G6 (1f); G7 (1g); G8 (1h); G9 (1i)] with different metal alkoxides. All of these new complexes have been characterized by elemental analyses, molecular weight determinations, and spectroscopic (I.r. and 1H, 27Al-n.m.r.) studies. Structural features of the new derivatives have been elucidated on the basis of molecular weight and spectroscopic data.  相似文献   

8.
[VOCl(OC6H3(NO2)2-2,4)2] (1) has been synthesized by the reaction of VOCl3 with bimolar amounts of Me3SiOC6H3(NO2)2-2,4 in toluene and characterized by elemental analyses, molar conductance, infrared (IR), 1H and 13C NMR and mass spectral, and thermal studies. Molecular modeling dynamics of the complex suggests tetrahedral geometry around vanadium. The reaction of 1 with sodium alkoxides, NaOR (OR?=?OMe (methoxy); OEt (ethoxy), OBun(n-butoxy); OPri (isopropoxy); and OAmi(isoamyloxy)) afforded mixed alkoxo–phenoxo complexes, [VO(OR)(OC6H3(NO2)2-2,4)2] authenticated by physicochemical and IR spectral studies. The antifungal activities of the ligand and complexes against three fungi, namely Aspergillus niger, Byssachlamys fulva, and Mucor circinelloides have been assayed by the minimum inhibitory concentration method. The complexes have improved antifungal activity compared to free ligand.  相似文献   

9.
Soluble heterobimetallic-N-(hydroxyethyl) salicylaldiminate-alkoxide derivatives of the types [VO(L)2{M(OPri)n−1}] [M=Al (2) (n = 3); Ti (3), Zr (4) (n = 4); Nb (5), Ta (6) (n = 5)], [where L represents the dianionic N-(hydroxyethyl) salicylaldiminate group bonded to vanadium in a tridentate fashion involving both the oxygen atoms and azomethine nitrogen], have been prepared by the reactions of insoluble [VO(L)(LH)] (1) with different metal alkoxides in a 1:1 molar ratio in benzene. A monomeric heterobinuclear complex of the type [VO(η3-L)(μ-OPri)2Al(η3-L)] (7) has been prepared by the equimolar reaction of [VO(η3-L)(μ-OPri)]2 with [Al(η3-L) (μ-OPri)]2 in benzene. All these complexes have been characterised by elemental analyses, molecular weight measurements, and by spectroscopic (l.r., 1H-, 27Al- and 51V-n.m.r.) studies. The monomeric nature of (1) and (2) has been supported by their FAB-mass spectral studies.  相似文献   

10.
Titanium(IV) complexes of the general formula TiL(OPr i )2 [where LH2 = R CH3 where R = ─C6H5, ─C6H4Cl(p)] were prepared by the interaction of titanium isopropoxide with sterically hindered Schiff bases derived from heterocyclic β -diketones in 1:1 molar ratio in dry benzene. The complexes TiL(OPr i )2 were used as versatile precursors for the synthesis of other titanium(IV) complexes. Titanium(IV) complexes of the type TiLL'(OPr i ) (where L'H═R1R2C═NOH, R1 = R2 = ─CH3; R1 = ─CH3,R2 = ─C6H5; R1 = ─COC6H5, R2 = ─C6H5) were synthesized by the reaction of TiL(OPr i )2 with ketooximes (L'H) in equimolar ratio in dry benzene. Another type of titanium(IV) complexes having the general formula TiLGH(OPr i ) (where GH2═HO─G─OH, G = ─CH2─CH2─) have been prepared by the reaction of TiL(OPr i )2 with glycol in 1:1 molar ratio in dry benzene. Plausible structures of these new titanium(IV) complexes have been proposed on the basis of analytical data, molecular weight measurements, and spectral studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号