首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 46 毫秒
1.
硅微谐振加速度计因具有小体积优势和高精度潜力,成为硅微惯性传感器研制的热点之一。工程化设计是硅微谐振加速度计从原理样机向成熟产品转化过程中的关键步骤之一。在分析硅微谐振加速度计工作机理的基础上,从工程实用化设计角度出发,提出了一种高精度硅微谐振加速度计工程化设计方法。分别从系统设计、结构设计、控制电路设计和测试与补偿技术等方面进行了分析和对比,讨论了误差来源与改进方法。测试表明,设计的高精度硅微谐振加速度计质量块基频大于3 k Hz,谐振音叉中心频率约18 k Hz,标度因数大于100 Hz/g,量程±40 g,死区小于0.67 mg,带宽大于200 Hz,振动整流误差0.344 mg,零位一次通电稳定性优于50μg,测试结果基本满足工程化应用指标。  相似文献   

2.
针对硅微谐振加速度计在进行结构设计时,如何根据模态特性选取工作模态这一问题,比较分析了加速度计工作在两种不同振动模态下的性能参数。首先采用刚度法分析了谐振器的振动特性,得出能够反映谐振器振动状态的两种模态即同相振动模态和反相振动模态,结合理论推导和仿真结果得出两种振动模态下谐振频率差值与标度因数差值呈线性关系;其次通过分析两种振动模态下的能量分布情况,得出两种振动模态下谐振器的品质因数与振梁振动幅值之间的关系,同相模态振动一个周期所消耗能量约为反相模态所消耗能量的2倍;最后通过评估硅微谐振加速度计的噪声,阐明了两种振动模态下部分噪声分量不同的原因并进行了实验验证。实验结果表明,在相同驱动电压下,同相模态相比反相模态总体噪声增大25.7%。该研究为设计硅微谐振式加速度计时,确定谐振器的振动模态及驱动方案提供了参考依据。  相似文献   

3.
硅微谐振加速度计因具有小体积优势和高精度潜力,成为硅微惯性传感器研制的热点之一。高精度相位闭环控制系统是决定硅微谐振加速度计精度水平的重要因素。在分析硅微谐振加速度计工作机理的基础上,从闭环控制系统设计的角度,分析了相位闭环控制回路的原理,提出了一种可以消除匀加速误差的高精度三阶无静差相位闭环控制方案。给出了设计思路,研究了环路性能测试方法,讨论了闭环系统相位误差的来源与抑制方法。所设计的闭环回路在0.1 Hz处静态增益为170 dB,启动时间小于20 ms,实测带宽为432 Hz,全温范围内相位闭环回路相差变化0.84°,系统参数满足设计指标。  相似文献   

4.
本文讨论了各向异性腐蚀的机理;硅的各向异性腐蚀设计;双面光刻等与微硅加速度计有关的超精细加工问题。  相似文献   

5.
硅微谐振加速度计因具有小体积优势和高精度潜力,成为硅微惯性传感器研制的热点之一。频率信号的高精度采集和系统参数补偿是提高硅微谐振加速度计性能的重要手段之一。在分析硅微谐振加速度计工作机理的基础上,从双路差动频率信号的精确采集和系统误差参数补偿角度出发,分析了数据采集的原理,提出了一种高精度硅微谐振加速度计用数据采集与参数补偿方法。给出了设计思路和电路实现方法,讨论了误差来源与改进方法。所设计的数据采集系统针对中心频率18 k Hz.,标度因数400 Hz/g,量程±20g的加速度计,数据更新周期200 ms下频率分辨率为0.0005 Hz,等效加速度分辨率达到1.25μg。测试表明,补偿后的硅微谐振加速度计,在全温(-40~+70℃)内,K0温度系数从262μg/℃降低到29.9μg/℃,K1变化量从4.18%降低到2.04‰,全量程非线性从7.16‰降低到0.128‰,系统参数满足设计指标。  相似文献   

6.
硅微谐振式加速度计能将被测加速度直接转换为稳定性和可靠性都很高的频率信号,因此可以获得优良的性能.高分辨率频率信号的获取需较长的测量时间,而在导航和姿态控制等应用中,测量时间一般又限定在较短的10 ms内.针对10 ms内对中心谐振频率为20 kHz、标度因数为100 Hz/g、量程为±50g.分辨率为±1mg的硅微谐振式加速度计输出的差分频率信号进行测量的要求,讨论荻取加速度测量值的数据采集系统的设计方法.介绍采用基于高速锁相环倍频和CPLD计数的频率测量方案和数据采集系统主要包括的整形电路、倍频电路、计数电路、微控制器和串行通信电路的设计方法.测试表明,设计的系统经达到了设计目标.  相似文献   

7.
温度是影响微加速度计性能的一个重要的因素。本文在分析微加速度计系统的基础上,设计并实现了电容式微加速度计专用集成电路,通过软件仿真和实际的温度试验,研究了专用集成电路的温度特性,给出了仿真和实测结果,并进行了相应的对比和分析。实测结果表明:在?40~120℃温度范围内,专用集成电路芯片输出随温度的输出变化为68.75μV/℃,即6.875×10-5。  相似文献   

8.
硅微谐振加速度计以高精度的频率信号输出及潜在的敏感结构与处理电路实现一次集成的优势,成为硅微传感器研制的热点之一。针对交流检测信号耦合效应对硅微谐振加速度计性能的重要影响,在分析硅微谐振加速度计工作机理的基础上,从结构和电路两方面研究了交流检测信号耦合效应的来源,分析了耦合效应对检测电路和闭环控制精度的影响。采用双质量块结构方案和电路优化设计所研制的硅微谐振加速度计,基频为15 kHz,标度因数为36 Hz/g,量程为±30 g。试验证明耦合效应对仪表性能的影响降低到0.3 mg以内。  相似文献   

9.
为提升摆式谐振式加速度计性能,设计了一种将质量块与微杠杆结构一体化的摆式微杠杆结构,实现惯性力的敏感与放大,提升结构的鲁棒性。首先建立了微杠杆结构力学模型,并进行了关键参数计算。其次,根据微杠杆结构放大倍数影响机理,分析了质量块、支撑梁及微杠杆结构尺寸参数对放大倍数的影响;理论分析与有限元仿真结果均表明,支点梁与输出梁的宽度应作为该类微杠杆的关键优化参数。最后,根据上述结论对现有结构尺寸进行优化,优化后的微杠杆放大倍数为15.68,系统放大倍数为12.88,标度因数为70.52 Hz/g,较优化前分别提升了36.94%、36.87%和36.88%,验证了优化方法的有效性。  相似文献   

10.
静电加速度计通过降低带宽和量程在空间微重力环境下可以实现极高的分辨率。设计了一种采用玻璃-硅-玻璃"三明治"结构、平行六面体状检验质量、体硅加工工艺的三轴硅微静电加速度计,推导并讨论了静电支承回路的典型刚度特性与控制参数之间的关系式。采用基于DSP的数字控制器,实现了敏感质量的六自由度稳定支承,在大气环境下测试了静电支承回路的主要性能。分析与测试结果表明,在支承系统频带内,支承刚度特性与控制器参数及气膜阻尼系数密切相关;同时,改变预载电压可以在较大范围内在线调整加速度计的量程和支承刚度等指标。  相似文献   

11.
针对单晶硅挠性摆式加速度计的高精度工程化应用需求,设计了加速度计组件及温控系统。针对大多数温控系统工作时的瞬时电流较大问题,设计了一种带抽头的加热片,将温控分为粗温控和精温控两个阶段,不同阶段采用不同的加热电阻。测试结果表明,设定目标温度为60℃,当外界环境温度从5℃到55℃变化时,温控系统到温时间小于15 min,控温精度小于±0.1℃,精温控时的最大电流为粗温控时的33.4%。连续15天通电实验表明,该组件的加速度计刻度系数K1稳定性小于10×10~(-6),偏值K0稳定性小于10μg,满足各类高精度、工程化的应用需求。  相似文献   

12.
石英挠性加速度计温度补偿算法   总被引:1,自引:0,他引:1  
石英挠性加速度是惯性导航系统核心的惯性器件之一,其输出精度受到温度变化的影响,为了降低温度对石英挠性加速度计精度的影响,在研究石英挠性加速度计数学模型的系数随温度变化规律的基础上,设计了加速度计温度模型辨识试验方法,利用数据拟合方法建立了加速度计温度模型。应用该模型提出了石英挠性加速度温度补偿算法,针对该算法的有效性,进行了实验验证,结果表明应用该温度补偿算法,可使加速度计的测量精度提高一个数量级,补偿效果明显。该温度补偿算法可有效地应用于捷联式惯性导航系统等领域中。  相似文献   

13.
梳齿式微机械加速度计的微机械结构在工作中受到预载电压、温度等多种因素的影响,输出具有非线性,研究指出这种非线性度和微机械结构的闭环位置相关.为了明确非线性度的来源,将从其系统模型入手分析,给出闭环状态和输出非线性度的定量关系.此外,环境因素也会通过加力电路间接的影响闭环系统的输出造成非线性度,文中将着重研究预载电压对称性和环境温度这两个重要的环境因素通过检测电路影响输出线性度的情况,并给出了实验验证.  相似文献   

14.
硅微振梁式加速度计抗温漂的微结构及工艺设计   总被引:1,自引:0,他引:1  
针对硅微振梁式加速度计输出频率随环境温度漂移的问题,提出了抗温漂的硅微结构设计方法及相关工艺,降低了环境温度对输出的影响,在室温条件即可达到一定精度。通过建立"硅-玻璃"和"玻璃-陶瓷"耦合模型,分析了造成硅微振梁式加速度计温度漂移的原因。然后提出了"抗温漂耦合设计"的微结构和"半粘结封装"的封装工艺,降低了耦合模型中的理论温漂。利用加工出的原理样机进行实验,结果显示,采用抗温漂结构设计及封装工艺的原理样机,输出频率的温漂系数为-3.5×10-6/℃,室温下零偏稳定性为72.0μg。实验验证了抗温漂理论的可行性,可以满足室温下高精度硅微振梁式加速度计的设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号