首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study mutually unbiased unextendible maximally entangled bases (MUUMEBs) in bipartite stystem \(\mathbb {C}^{d}\otimes \mathbb {C}^{d + 1}\). By deriving the sufficient and necessary conditions that two MUUMEBs in \(\mathbb {C}^{3}\otimes \mathbb {C}^{4}\) need to satisfy, we first establish two pairs of MUUMEBs in \(\mathbb {C}^{3}\otimes \mathbb {C}^{4}\). Then we present the sufficient and necessary conditions that two MUUMEBs in bipartite system \(\mathbb {C}^{d}\otimes \mathbb {C}^{d + 1}\) need to satisfy, thus generalize the main results of Halqem et al. (Int. J. Theor. Phys. 54(1), 326, 2015).  相似文献   

2.
The mutually unbiasedness between a maximally entangled basis (MEB) and an unextendible maximally entangled system (UMES) in the bipartite system \(\mathbb {C}^{2}\otimes \mathbb {C}^{2^{k}} (k>1)\) are introduced and discussed first in this paper. Then two mutually unbiased pairs of a maximally entangled basis and an unextendible maximally entangled system are constructed; lastly, explicit constructions are obtained for mutually unbiased MEB and UMES in \(\mathbb {C}^{2}\otimes \mathbb {C}^{4}\) and \(\mathbb {C}^{2}\otimes \mathbb {C}^{8}\), respectively.  相似文献   

3.
We analyse a monotone lagrangian in \(\mathbb {CP}^2\) that is hamiltonian isotopic to the standard lagrangian \(\mathbb {RP}^2\), yet exhibits a distinguishing behaviour under reduction by one of the toric circle actions, namely it intersects transversally the reduction level set and it projects one-to-one onto a great circle in \(\mathbb {CP}^1\). This lagrangian thus provides an example of embedded composition fitting work of Wehrheim–Woodward and Weinstein.  相似文献   

4.
We construct a \(U_q\bigl (\mathfrak {s}\mathfrak {o}(2n+1)\bigr )\)-equivariant local star product on the complex sphere \(\mathbb {S}^{2n}\) as a non-Levi conjugacy class \(SO(2n+1)/SO(2n)\).  相似文献   

5.
In the aligned two-Higgs-doublet model, we perform a complete one-loop computation of the short-distance Wilson coefficients \(C_{7,9,10}^{(\prime )}\), which are the most relevant ones for \(b\rightarrow s\ell ^+\ell ^-\) transitions. It is found that, when the model parameter \(\left| \varsigma _{u}\right| \) is much smaller than \(\left| \varsigma _{d}\right| \), the charged scalar contributes mainly to chirality-flipped \(C_{9,10}^\prime \), with the corresponding effects being proportional to \(\left| \varsigma _{d}\right| ^2\). Numerically, the charged-scalar effects fit into two categories: (A) \(C_{7,9,10}^\mathrm {H^\pm }\) are sizable, but \(C_{9,10}^{\prime \mathrm {H^\pm }}\simeq 0\), corresponding to the (large \(\left| \varsigma _{u}\right| \), small \(\left| \varsigma _{d}\right| \)) region; (B) \(C_7^\mathrm {H^\pm }\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are sizable, but \(C_{9,10}^\mathrm {H^\pm }\simeq 0\), corresponding to the (small \(\left| \varsigma _{u}\right| \), large \(\left| \varsigma _{d}\right| \)) region. Taking into account phenomenological constraints from the inclusive radiative decay \(B\rightarrow X_{s}{\gamma }\), as well as the latest model-independent global analysis of \(b\rightarrow s\ell ^+\ell ^-\) data, we obtain the much restricted parameter space of the model. We then study the impact of the allowed model parameters on the angular observables \(P_2\) and \(P_5'\) of \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) decay, and we find that \(P_5'\) could be increased significantly to be consistent with the experimental data in case B.  相似文献   

6.
Treating the light-flavor constituent quarks and antiquarks whose momentum information is extracted from the data of soft light-flavor hadrons in pp collisions at \(\sqrt{s}=7\) TeV as the underlying source of chromatically neutralizing the charm quarks of low transverse momenta (\(p_{T}\)), we show that the experimental data of \(p_{T}\) spectra of single-charm hadrons \(D^{0,+}\), \(D^{*+}\) \(D_{s}^{+}\), \(\varLambda _{c}^{+}\) and \(\varXi _{c}^{0}\) at mid-rapidity in the low \(p_{T}\) range (\(2\lesssim p_{T}\lesssim 7\) GeV/c) in pp collisions at \(\sqrt{s}=7\) TeV can be well understood by the equal-velocity combination of perturbatively created charm quarks and those light-flavor constituent quarks and antiquarks. This suggests a possible new scenario of low \(p_{T}\) charm quark hadronization, in contrast to the traditional fragmentation mechanism, in pp collisions at LHC energies. This is also another support for the exhibition of the soft constituent quark degrees of freedom for the small parton system created in pp collisions at LHC energies.  相似文献   

7.
In this paper, in order to probe the spectator-scattering and weak annihilation contributions in charmless \(B_s\rightarrow VV\) (where V stands for a light vector meson) decays, we perform the \(\chi ^2\)-analyses for the endpoint parameters within the QCD factorization framework, under the constraints from the measured \(\bar{B}_{s}\rightarrow \) \(\rho ^0\phi \), \(\phi K^{*0}\), \(\phi \phi \) and \(K^{*0}\bar{K}^{*0}\) decays. The fitted results indicate that the endpoint parameters in the factorizable and nonfactorizable annihilation topologies are non-universal, which is also favored by the charmless \(B\rightarrow PP\) and PV (where P stands for a light pseudo-scalar meson) decays observed in previous work. Moreover, the abnormal polarization fractions \(f_{L,\bot }(\bar{B}_{s}\rightarrow K^{*0}\bar{K}^{*0})=(20.1\pm 7.0)\%,(58.4\pm 8.5)\%\) measured by the LHCb collaboration can be reconciled through the weak annihilation corrections. However, the branching ratio of \(\bar{B}_{s}\rightarrow \phi K^{*0}\) decay exhibits a tension between the data and theoretical result, which dominates the contributions to \(\chi _\mathrm{min}^2\) in the fits. Using the fitted endpoint parameters, we update the theoretical results for the charmless \(B_s\rightarrow VV\) decays, which will be further tested by the LHCb and Belle-II experiments in the near future.  相似文献   

8.
We consider bond percolation on \({\mathbb {Z}}^d\times {\mathbb {Z}}^s\) where edges of \({\mathbb {Z}}^d\) are open with probability \(p<p_c({\mathbb {Z}}^d)\) and edges of \({\mathbb {Z}}^s\) are open with probability q, independently of all others. We obtain bounds for the critical curve in (pq), with p close to the critical threshold \(p_c({\mathbb {Z}}^d)\). The results are related to the so-called dimensional crossover from \({\mathbb {Z}}^d\) to \({\mathbb {Z}}^{d+s}\).  相似文献   

9.
We first construct a new maximally entangled basis in bipartite systems \(\mathbb {C}^{d} \otimes \mathbb {C}^{kd}\ (k\in Z^{+})\) which is diffrent from the one in Tao et al. (Quantum Inf. Process. 14, 2291 (2015)), then we generalize such maximally entangled basis into arbitrary bipartite systems \(\mathbb {C}^{d} \otimes \mathbb {C}^{d^{\prime }}\). We also study the mutual unbiased property of the two types of maximally entangled bases in bipartite systems \(\mathbb {C}^{d} \otimes \mathbb {C}^{kd}\). In particular, explicit examples in \(\mathbb {C}^{2} \otimes \mathbb {C}^{4}\), \(\mathbb {C}^{2} \otimes \mathbb {C}^{8}\) and \(\mathbb {C}^{3} \otimes \mathbb {C}^{3}\) are presented.  相似文献   

10.
We prove global well-posedness in H 1 for the energy-critical defocusing initial-value problem \({(i\partial_t+\Delta_x)u=u|u|^2,\quad u(0)=\phi,}\) in the semiperiodic setting \({x\in\mathbb{R} \times \mathbb{T}^3}\) .  相似文献   

11.
We investigate the decays of \(\bar{B}^0_s\), \(\bar{B}^0\) and \(B^-\) into \(\eta _c\) plus a scalar or vector meson in a theoretical framework by taking into account the dominant process for the weak decay of \(\bar{B}\) meson into \(\eta _c\) and a \(q\bar{q}\) pair. After hadronization of this \(q\bar{q}\) component into pairs of pseudoscalar mesons we obtain certain weights for the pseudoscalar meson-pseudoscalar meson components. In addition, the \(\bar{B}^0\) and \(\bar{B}^0_s\) decays into \(\eta _c\) and \(\rho ^0\), \(K^*\) are evaluated and compared to the \(\eta _c\) and \(\phi \) production. The calculation is based on the postulation that the scalar mesons \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\) are dynamically generated states from the pseudoscalar meson-pseudoscalar meson interactions in S-wave. Up to a global normalization factor, the \(\pi \pi \), \(K \bar{K}\) and \(\pi \eta \) invariant mass distributions for the decays of \(\bar{B}^0_s \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0_s \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0 \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^0 \eta \), \(B^- \rightarrow \eta _c K^0 K^-\) and \(B^- \rightarrow \eta _c \pi ^- \eta \) are predicted. Comparison is made with the limited experimental information available and other theoretical calcualtions. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the nature of the low lying scalar mesons, \(f_0(500), f_0(980)\) and \(a_0(980)\).  相似文献   

12.
We study minimizers of the pseudo-relativistic Hartree functional \({\mathcal {E}}_{a}(u):=\Vert (-\varDelta +m^{2})^{1/4}u\Vert _{L^{2}}^{2}+\int _{{\mathbb {R}}^{3}}V(x)|u(x)|^{2}\mathrm{d}x-\frac{a}{2}\int _{{\mathbb {R}}^{3}}(\left| \cdot \right| ^{-1}\star |u|^{2})(x)|u(x)|^{2}\mathrm{d}x\) under the mass constraint \(\int _{{\mathbb {R}}^3}|u(x)|^2\mathrm{d}x=1\). Here \(m>0\) is the mass of particles and \(V\ge 0\) is an external potential. We prove that minimizers exist if and only if a satisfies \(0\le a<a^{*}\), and there is no minimizer if \(a\ge a^*\), where \(a^*\) is called the Chandrasekhar limit. When a approaches \(a^*\) from below, the blow-up behavior of minimizers is derived under some general external potentials V. Here we consider three cases of V: trapping potential, i.e. \(V\in L_{\mathrm{loc}}^{\infty }({\mathbb {R}}^3)\) satisfies \(\lim _{|x|\rightarrow \infty }V(x)=\infty \); periodic potential, i.e. \(V\in C({\mathbb {R}}^3)\) satisfies \(V(x+z)=V(x)\) for all \(z\in \mathbb {Z}^3\); and ring-shaped potential, e.g. \( V(x)=||x|-1|^p\) for some \(p>0\).  相似文献   

13.
The \(B^{0}_{s}\to J/\psi f_{0}(980)\) decay offers an interesting experimental alternative to the well-known \(B^{0}_{s}\to J/\psi \phi\) channel for the search of CP-violating New-Physics contributions to \(B^{0}_{s}\)\(\bar{B}^{0}_{s}\) mixing. As the hadronic structure of the f 0(980) has not yet been settled, we take a critical look at the implications for the relevant observables and address recent experimental data. It turns out that the effective lifetime of \(B^{0}_{s}\to J/\psi f_{0}(980)\) and its mixing-induced CP asymmetry S are quite robust with respect to hadronic effects and thereby allow us to search for a large CP-violating \(B^{0}_{s}\)\(\bar{B}^{0}_{s}\) mixing phase ? s , which is tiny in the Standard Model. However, should small CP violation, i.e. in the range ?0.1?S?0, be found in \(B^{0}_{s}\to J/\psi f_{0}(980)\), it will be crucial to constrain hadronic corrections in order to distinguish possible New-Physics effects from the Standard Model. We point out that \(B^{0}_{d}\to J/\psi f_{0}(980)\), which has not yet been measured, is a key channel in this respect and discuss the physics potential of this decay.  相似文献   

14.
We consider the scattering of kinks of the sinh-deformed \(\varphi ^4\) model, which is obtained from the well-known \(\varphi ^4\) model by means of the deformation procedure. Depending on the initial velocity \(v_\mathrm {in}\) of the colliding kinks, different collision scenarios are realized. There is a critical value \(v_\mathrm {cr}\) of the initial velocity, which separates the regime of reflection (at \(v_\mathrm {in}>v_\mathrm {cr}\)) and that of a complicated interaction (at \(v_\mathrm {in}<v_\mathrm {cr}\)) with kinks’ capture and escape windows. Besides that, at \(v_\mathrm {in}\) below \(v_\mathrm {cr}\) we observe the formation of a bound state of two oscillons, as well as their escape at some values of \(v_\mathrm {in}\).  相似文献   

15.
We have measured the cross-section for the \(K_{S}^{0}\) production from beryllium target using 120 \(\hbox {GeV}/\hbox {c}\) protons beam interactions at the main injector particle production (MIPP) experiment at Fermilab. The data were collected with target having a thickness of 0.94% of the nuclear interaction length. The \(K_{S}^{0}\) inclusive differential cross-section in bins of momenta is presented covering momentum range from \(0.4\,\hbox {GeV}/\hbox {c}\) to \(30\,\hbox {GeV}/\hbox {c}\). The measured inclusive \(K_{S}^{0}\) production cross-section amounts to \(39.54\pm 1.46\delta _{\mathrm {stat}}\pm 6.97\delta _{\mathrm {syst}}\) mb and the value is compared with the prediction of FLUKA hadron production model.  相似文献   

16.
It is shown that the deterministic infinite trigonometric products
$$\begin{aligned} \prod _{n\in \mathbb {N}}\left[ 1- p +p\cos \left( \textstyle n^{-s}_{_{}}t\right) \right] =: {\text{ Cl }_{p;s}^{}}(t) \end{aligned}$$
with parameters \( p\in (0,1]\ \& \ s>\frac{1}{2}\), and variable \(t\in \mathbb {R}\), are inverse Fourier transforms of the probability distributions for certain random series \(\Omega _{p}^\zeta (s)\) taking values in the real \(\omega \) line; i.e. the \({\text{ Cl }_{p;s}^{}}(t)\) are characteristic functions of the \(\Omega _{p}^\zeta (s)\). The special case \(p=1=s\) yields the familiar random harmonic series, while in general \(\Omega _{p}^\zeta (s)\) is a “random Riemann-\(\zeta \) function,” a notion which will be explained and illustrated—and connected to the Riemann hypothesis. It will be shown that \(\Omega _{p}^\zeta (s)\) is a very regular random variable, having a probability density function (PDF) on the \(\omega \) line which is a Schwartz function. More precisely, an elementary proof is given that there exists some \(K_{p;s}^{}>0\), and a function \(F_{p;s}^{}(|t|)\) bounded by \(|F_{p;s}^{}(|t|)|\!\le \! \exp \big (K_{p;s}^{} |t|^{1/(s+1)})\), and \(C_{p;s}^{}\!:=\!-\frac{1}{s}\int _0^\infty \ln |{1-p+p\cos \xi }|\frac{1}{\xi ^{1+1/s}}\mathrm{{d}}\xi \), such that
$$\begin{aligned} \forall \,t\in \mathbb {R}:\quad {\text{ Cl }_{p;s}^{}}(t) = \exp \bigl ({- C_{p;s}^{} \,|t|^{1/s}\bigr )F_{p;s}^{}(|t|)}; \end{aligned}$$
the regularity of \(\Omega _{p}^\zeta (s)\) follows. Incidentally, this theorem confirms a surmise by Benoit Cloitre, that \(\ln {\text{ Cl }_{{{1}/{3}};2}^{}}(t) \sim -C\sqrt{t}\; \left( t\rightarrow \infty \right) \) for some \(C>0\). Graphical evidence suggests that \({\text{ Cl }_{{{1}/{3}};2}^{}}(t)\) is an empirically unpredictable (chaotic) function of t. This is reflected in the rich structure of the pertinent PDF (the Fourier transform of \({\text{ Cl }_{{{1}/{3}};2}^{}}\)), and illustrated by random sampling of the Riemann-\(\zeta \) walks, whose branching rules allow the build-up of fractal-like structures.
  相似文献   

17.
We study frame properties of a matrix-valued wave packet system in the matrix-valued function space \(L^{2}(\mathbb {R}^{d}, \mathbb {C}^{s\times r})\), where the lower frame condition is controlled by a bounded linear operator \(\mathcal {K}\) on \(L^{2}(\mathbb {R}^{d}, \mathbb {C}^{s\times r})\) (lower \(\mathcal {K}\)-frame condition, in short). There are many differences between ordinary frames and \(\mathcal {K}\)-frames. The lower \(\mathcal {K}\)-frame condition for matrix-valued wave packet Bessel sequences in \(L^{2}(\mathbb {R}^{d},\mathbb {C}^{s\times r})\) in terms of operators; a trace functional associated with a bounded linear operator on \(L^{2}(\mathbb {R}^{d}, \mathbb {C}^{s\times r})\); and a series associated with a matrix-valued Bessel sequence is presented. It is shown that matrix-valued wave packet frames are stable under small perturbation with respect to wave packet window functions.  相似文献   

18.
We study the prompt production of the \(\chi _c(1^+)\) and \(\chi _b(1^+)\) mesons at high energies. Unlike \(\chi (0^+,2^+)\) production, \(\chi (1^+)\) mesons cannot be created at LO via the fusion of two on-mass-shell gluons, that is, \(gg\rightarrow \chi _{c,b}(1^+)\) are not allowed. However, the available experimental data show that the cross sections for \(\chi _c(1^+)\) and \(\chi _c(2^+)\) are comparable. We therefore investigate four other \(\chi (1^+)\) production mechanisms: namely, (i) the standard NLO process \(gg\rightarrow \chi _{c,b}(1^+)+g\), (ii) via gluon virtuality, (iii) via gluon reggeisation and, finally, (iv) the possibility to form \(\chi _{c,b}(1^+)\) by the fusion of three gluons, where one extra gluon comes from another parton cascade, as in the Double Parton Scattering processes.  相似文献   

19.
We investigate the following questions: Given a measure \(\mu _\Lambda \) on configurations on a subset \(\Lambda \) of a lattice \(\mathbb {L}\), where a configuration is an element of \(\Omega ^\Lambda \) for some fixed set \(\Omega \), does there exist a measure \(\mu \) on configurations on all of \(\mathbb {L}\), invariant under some specified symmetry group of \(\mathbb {L}\), such that \(\mu _\Lambda \) is its marginal on configurations on \(\Lambda \)? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which \(\mathbb {L}=\mathbb {Z}^d\) and the symmetries are the translations. For the case in which \(\Lambda \) is an interval in \(\mathbb {Z}\) we give a simple necessary and sufficient condition, local translation invariance (LTI), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which \(\mathbb {L}\) is the Bethe lattice. On \(\mathbb {Z}\) we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When \(\Lambda \subset \mathbb {Z}\) is not an interval, or when \(\Lambda \subset \mathbb {Z}^d\) with \(d>1\), the LTI condition is necessary but not sufficient for extendibility. For \(\mathbb {Z}^d\) with \(d>1\), extendibility is in some sense undecidable.  相似文献   

20.
Let \(z\in \mathbb {C}\), let \(\sigma ^2>0\) be a variance, and for \(N\in \mathbb {N}\) define the integrals
$$\begin{aligned} E_N^{}(z;\sigma ) := \left\{ \begin{array}{ll} {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}}\! (x^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x^2}}{\sqrt{2\pi }}dx&{}\quad \text{ if }\, N=1,\\ {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}^N}\! \prod \prod \limits _{1\le k<l\le N}\!\! e^{-\frac{1}{2N}(1-\sigma ^{-2}) (x_k-x_l)^2} \prod _{1\le n\le N}\!\!\!\!(x_n^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x_n^2}}{\sqrt{2\pi }}dx_n &{}\quad \text{ if }\, N>1. \end{array}\right. \!\!\! \end{aligned}$$
These are expected values of the polynomials \(P_N^{}(z)=\prod _{1\le n\le N}(X_n^2+z^2)\) whose 2N zeros \(\{\pm i X_k\}^{}_{k=1,\ldots ,N}\) are generated by N identically distributed multi-variate mean-zero normal random variables \(\{X_k\}^{N}_{k=1}\) with co-variance \(\mathrm{{Cov}}_N^{}(X_k,X_l)=(1+\frac{\sigma ^2-1}{N})\delta _{k,l}+\frac{\sigma ^2-1}{N}(1-\delta _{k,l})\). The \(E_N^{}(z;\sigma )\) are polynomials in \(z^2\), explicitly computable for arbitrary N, yet a list of the first three \(E_N^{}(z;\sigma )\) shows that the expressions become unwieldy already for moderate N—unless \(\sigma = 1\), in which case \(E_N^{}(z;1) = (1+z^2)^N\) for all \(z\in \mathbb {C}\) and \(N\in \mathbb {N}\). (Incidentally, commonly available computer algebra evaluates the integrals \(E_N^{}(z;\sigma )\) only for N up to a dozen, due to memory constraints). Asymptotic evaluations are needed for the large-N regime. For general complex z these have traditionally been limited to analytic expansion techniques; several rigorous results are proved for complex z near 0. Yet if \(z\in \mathbb {R}\) one can also compute this “infinite-degree” limit with the help of the familiar relative entropy principle for probability measures; a rigorous proof of this fact is supplied. Computer algebra-generated evidence is presented in support of a conjecture that a generalization of the relative entropy principle to signed or complex measures governs the \(N\rightarrow \infty \) asymptotics of the regime \(iz\in \mathbb {R}\). Potential generalizations, in particular to point vortex ensembles and the prescribed Gauss curvature problem, and to random matrix ensembles, are emphasized.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号