首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The vibrational characteristics of deuterated acetonitrile dissolved in isopropanol, dimethyl formamide (DMF), and dimethyl sulfoxide (DMSO) have been studied. Observed vibrational bands show substantial frequency shifts, the amounts of which vary almost linearly with concentration. The absorption feature in the region of 2220–2280 cm−1 was deconvoluted to the consisting absorption bands. The band at 2258 cm−1 of pure CD3CN, which is on the low frequency side of the monomer CN stretch (ν2), is attributed to the CN stretch of the dimer (ν′2). The shoulder found on the further low frequency side of the ν2 band, particularly in dilute solution, is believed to be due to ν5, and its frequency and intensity vary largely as a function of concentration along with those of other vibrational bands involved with the CD3 group. The ν5 band of pure CD3CN is believed to be active and located at about 2251 cm−1. Ab initio calculations have also been performed for the solute–solvent complexes, CD3CN–DMF and CD3CN–DMSO, at the MP2/6-31+G(2d,p) level assuming anti-parallel configurations. The calculated results show a good agreement with the observed results.  相似文献   

2.
The complexes formed by dimethylsulphide (DMS) and dimethyldisulphide (DMDS) with two isomers of nitrous acid have been observed, and characterised in argon and nitrogen matrices. The ν1 OH stretching vibration of the perturbed trans-HONO monomer is 425 and 294 cm−1 red shifted, respectively, for the DMS and DMDS complex in solid argon, and 441 and 301 cm−1 in solid nitrogen. A large blue shift is also observed for the ν3 NOH in-plane deformation mode: 101 and 80 cm−1 for DMS–HONO-trans in argon and nitrogen matrices and 46 cm−1 for DMDS–HONO-trans in nitrogen matrix. The results indicate formation of strong hydrogen bonds in the studied DMS–HONO and DMDS–HONO systems. The origin of the complicated shape of the ν1 OH absorption is discussed. Similarities and differences between argon and nitrogen matrices are considered.  相似文献   

3.
The high-resolution infrared absorption spectrum of an equilibrium mixture of HCN and HCl in a static gas long-path absorption cell is recorded in the 2500–2900 cm−1 spectral region at 205 K. The spectrum shows rovibrational structure which has the typical appearance of a parallel band of a linear molecule and is assigned to the intramolecular H–Cl stretching vibration band ν2 of the linear HCN–H35Cl heterodimer. The rovibrational analysis of the band yield a band origin ν0 of 2779.0968(12) cm−1 together with a value for the upper-state rotational constant B′ of 0.067722(2) cm−1. The observed red shift of 107 cm−1 for the ν2 band of HCN–H35Cl relative to the H–Cl stretching vibration band of monomer H35Cl is in excellent agreement with results from the MP2/6−311++G** level of theory. The value of the upper-state rotational constant shows that the intermolecular hydrogen bond shortens by 0.022 Å upon intramolecular vibrational excitation of the ν2 mode.  相似文献   

4.
The syntheses and structural determination of NdIII and ErIII complexes with nitrilotriacetic acid (nta) were reported in this paper. Their crystal and molecular structures and compositions were determined by single-crystal X-ray structure analyses and elemental analyses, respectively. The crystal of K3[NdIII(nta)2(H2O)]·6H2O complex belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5490(11) nm, b=1.3028(9) nm, c=2.6237(18) nm, β=96.803(10)°, V=5.257(6) nm3, Z=8, M=763.89, Dc=1.930 g cm−3, μ=2.535 mm−1 and F(000)=3048. The final R1 and wR1 are 0.0390 and 0.0703 for 4501 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0758 and 0.0783 for all 10474 reflections, respectively. The NdIIIN2O7 part in the [NdIII(nta)2(H2O)]3− complex anion has a pseudo-monocapped square antiprismatic nine-coordinate structure in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly. The crystal of the K3[ErIII(nta)2(H2O)]·5H2O complex also belongs to monoclinic crystal system and C2/c space group. The crystal data are as follows: a=1.5343(5) nm, b=1.2880(4) nm, c=2.6154(8) nm, b=96.033(5)°, V=5.140(3) nm3, Z=8, M=768.89, Dc=1.987 g cm−3, μ=3.833 mm−1 and F(000)=3032. The final R1 and wR1 are 0.0321 and 0.0671 for 4445 (I>2σ(I)) unique reflections, R2 and wR2 are 0.0432 and 0.0699 for all 10207 reflections, respectively. The ErIIIN2O7 part in the [ErIII(nta)2(H2O)]3− complex anion has the same structure as NdIIIN2O7 part in which the eight coordinate atoms (two N and six O) are from the two nta ligands and a water molecule coordinate to the central NdIII ion directly.  相似文献   

5.
The spectrum of CD2HF was measured by high-resolution interferometric Fourier-transform IR (FTIR) spectroscopy (apodised instrumental band with:0.004 cm−1 fwhm) between 800 and 1200 cm−1 covering the four lowest fundamentals. A complete rotational analysis using a semi-automatic assignment procedure yields accurate band centres (ν9: 912.2028 cm−1, ν6:964.4994 cm−1, ν5: 1050.5104 cm−1, ν4: 1093.8632 cm−1) and a complete set of first-order Coriolis coupling constants. The most important couplings occur between ν9 and ν6a= 1.069 cm−1, ξc= −0.3535 cm−1) and between ν5 and ν4b= −0.80606 cm−1). The analysis was guided by and compared with results from our ab initio calculations for Coriolis constants and transition moments using CADPAC at TZP/MP2 level.  相似文献   

6.
The vibrational spectrum of Sb4O6 in the gas phase has been measured at 1000 K by high-temperature infrared spectroscopy. The four infrared-active absorption bands were observed at ν7 = 785.0 cm1, ν8 = 176.2 cm−1, ν9 = 292.4 cm−1 and ν10 = 415.6 cm−1. By combining these results with data on the molecular geometry and the infrared-inactive modes, as reported in the literature, the thermodynamic functions of Sb4O6 have been calculated.  相似文献   

7.
Medium-resolution spectra of the N2 b1Πu-X1Σg+ band system were recorded by 1 + 1 multiphoton ionization. In the spectra we found different linewidths for transitions to different vibrational levels in the b 1Πu state: Δν0 = 0.50 ± 0.05 cm−1, Δν1 = 0.28 ± 0.02 cm−1, Δν2 = 0.65 ± 0.06 cm−1, Δν3 = 3.2 ± 0.5 cm−1, Δν4 = 0.60 ± 0.07 cm−1, and Δν5 = 0.28 ± 0.02 cm−1. From these linewidths, predissociation lifetimes τν were obtained: τ0 = 16 ± 3 ps, τ1 > 150 ps, τ2 = 10 ± 2 ps, τ3 = 1.6 ± 0.3 ps, τ4 = 9 ± 2 ps, and τ5 > 150 ps. Band origins and rotational constants for the b 1Πuν = 0 and 1 levels were determined for the 14N2 and 14N15N molecules.  相似文献   

8.
A novel dinuclear complex [Cu2(μ-L)4(HL)2] (1) was isolated from starting 2-pyridone (HL) via a resonance and a tautomeric transformation. Each copper centre is in a square-pyramidal coordination sphere, defined by two oxygen atoms (Cu–O4 1.978(5), Cu–O11 1.964(4) Å) and two nitrogen atoms (Cu–N2 2.003(5), Cu–N3 2.007(5) Å) of four bridging deprotonated pyridin-2-olates and an oxygen atom on the top from a neutral 2-pyridone (Cu–O2 2.227(5) Å), analogous to tetracarboxylate paddle-wheel complexes. Compound 1 was compared with mixed pyridin-2-olato/methanoato analogues [Cu2(μ-HCO2)2(μ-L)2(HL)2] · 2CH3CN (2) and [Cu2(μ-HCO2)2(μ-L)2(HL)2] (2a) (2a is an air stable form obtained from 2 outside mother-liquid). The EPR spectra of air stable 1 and 2a show three signals Hz1, H2 and Hz2, typical for the binuclear systems with spin S = 1, both revealing strong antiferromagnetism 2J = −334 (1) and −324 cm−1 (2a). Interestingly, only for 1 additional H1 signal at 100 mT is noticed (D(1) = 0.293 cm−1 <  = 0.320 cm−1 < D(2a) = 0.347 cm−1). On the other hand, several broad signals in the 100–450 mT region, only in the high temperature spectrum for 2a are observed. These results are in agreement with the magnetic susceptibility analysis.  相似文献   

9.
Large-scale CEPA-1 calculations have been carried out for linear C5, a molecule of substantial interest to combustion processes and astrochemistry. The equilibrium bond lengths are predicted to be 1.289 Å (outer CC bond) and 1.283 Å (inner CC bond), with an accuracy of 0.002 Å. The calculated ν3 band origins of 2161 cm−1 (105 CGTO basis) and 2137 cm−1 (150 CGTO basis) are in good agreement with the experimental value of 2169 cm−1. This band has an extremely large transition moment of 0.74 D. The less intense stretching fundamental ν4 (μ=0.18 D) is predicted to occur at 1478 ± 10 cm−1. Predictions for the totally symmetric stretching and the bending vibrational frequencies (in cm−1) are 2008 (1σg+), 792 (2σg+), 570 (1πu), 209 (1πg) and 119 (2πu).  相似文献   

10.
The bimetallic [Pt(NH3)4]2[W(CN)8][NO3]·2H2O is characterised by single-crystal X-ray diffraction [S.G.P21/m(11), a=8.0418(7), b=19.122(2), c=9.0812(6) Å, Z=2]. All platinum centres have the square-plane D4h geometry with average dimensions Pt(1)–N 2.042(2) and Pt(2)–N 2.037(10) Å. The octacyanotungstate anion has the square-antiprismatic D4d configuration with average dimensions W(1)–C 2.164(13), C–N 1.140(12), W(1)–N 3.303(5) Å. The structure exhibits two different mutual orientations of Pt versus W units resulting in Pt(2)–W(1), W(1)* separations of 4.77(2), 4.55(2)* and Pt(1)–W(1) of 6.331(8) Å. A centrosymmetric structure reveals groups of two distinct columns: the first is formed by intercalated NO3 between parallel [Pt(1)(NH3)4]2+ planes and the second consists of [W(CN)8]3− interlayered by, parallel to square faces of W-antiprisms, [Pt(2)(NH3)4]2+. The structure is stabilised through a three-dimensional hydrogen bond network via nitrogen atoms of cyanide ligands, hydrogen atoms of NH3 ligands, water molecules and oxygen atoms of NO3 counteranions. The vibrational pattern and the range of ν(CN) frequencies attributable to the electronic environment of W(V) and W(IV) are consistent with the ground state Pt(II)↔W(V) charge transfer.  相似文献   

11.
The tridecameric aluminum polymer [AlO4Al12(OH)24(H2O)12]7+ was prepared by forced hydrolysis of Al3+ up to an OH/Al molar ratio of 2.2. Upon addition of sulfate, the tridecamer crystallized as the monoclinic basic aluminum sulfate Na0.1[AlO4Al12(OH)24(H2O)12](SO4)3.55. The dehydroxylation of the basic aluminum sulfate has been studied by Fourier transform in-situ infrared emission spectroscopy over a temperature range of 200° to 750°C at 50°C intervals. The spectrum is characterized by the sulfate ν1 (1024 cm−1), ν3 doublet (1117 and 1168 cm−1) and the ν4 doublet (568 and 611 cm−1) modes. Furthermore, minor bands assigned to nitrate are observed. Upon heating from ≈350° to 400°C major changes are observed, especially in the bandwidth and band intensities. The bands in the hydroxyl stretching region due to the Al13 group disappear, whereas the bands around 1050 cm−1 display various changes in bandwidths, intensities and positions associated with the dehydration and dehydroxylation of the basic sulfate and the changing of the structure into an aluminum oxosulfate. The nitrate bands diminish upon heating.  相似文献   

12.
The infrared spectra of phosphinic acid R2POOH dimers (R=CH3, CH2Cl, C6H5) have been studied in CCl4 and CH2Cl2 solutions (T=300 K). The infrared spectra of deuterated R2POOD dimers (R=CH3, CH2Cl) were also studied in the gas phase (T=400–550 K) and solid state (T=100–300 K). They are compared with previously studied spectra of the light (non-deuterated) dimers in the gas phase, in the solid state and in low-temperature argon matrices (T=12–30 K) in the 4000–400 cm−1 spectral region. It is found that the strong and broad ν(OH) dimer bands have similar shapes, nearly equal values of bandwidth and low-frequency shift, and possess the Hadzi ABC structure irrespective of the type of acid, significant differences of dimerization enthalpies, influence of solvent, the type of H-bonded complexes (cyclic dimers in the gas phase, in solutions, and in inert matrices, and infinite chains in the solid state), and temperature in the range 12–600 K. Isotopic ratio of the first moments of light and deuterated acid bands has been measured. Analysis of the ν(OH/OD) band of hydrogen bonded dimers of phosphinic acids shows that the interaction between the two intermolecular bonds O–HOP in a cyclic complex plays virtually no role in the mechanism of the ν(OH/OD) band formation; the shape of ν(OH/OD) band is controlled mainly by the POOH(D)O fragment; and the band shape of strong hydrogen bonded complexes is formed by a number of vibrational transitions from the ground state to different combination levels in the region 3500–1500 cm−1.  相似文献   

13.
The new iodoammonium salts o-C6H4(NH2)2I+I (1) and o-C6H4(NH2)2I+ AsF6 (2) were prepared by reaction of o-phenylene diamine with I2 or I3+AsF6, respectively. Compound 1 reacts with AlI3 yielding quantitatively the corresponding tetraiodoaluminate o-C6H4(NH2)2I+AlI4 (3). The species were characterized by chemical analysis, vibrational (IR and Raman) and temperature-dependent 1H NMR spectropscopy. Direct evidence for a N---I bond was found in the Raman spectra of 1, 2 and 3 (ν(NI) = 599–600 cm−1).  相似文献   

14.
Carbon oxides of the form COn (n = 2–8) have long been known as important molecules in atmospheric and solid state chemical reactions. Here, we report on the first infrared spectroscopic detection of the cyclic (Cs) isomer of carbon hexaoxide (12C16O6) via its ν1 vibrational mode centered around 1876 cm−1 under matrix isolation conditions; the identification of the 12C18O6, 13C16O6, and 13C18O6, isotopologues supported by ab initio calculations confirm the assignments. We also discuss possible formation routes of this molecule.  相似文献   

15.
The mid-infrared spectrum of the ionic complex He---NH4+ has been recorded in the vicinity of the triply degenerate ν3 (t2) vibration of the free ammonium ion. Apart from a small blue shift (≈ 0.7 cm−1), the spectrum of the complex closely resembles that of the monomer. Ab initio calculations predict a vertex-bound minimum structure with an intermolecular well depth De ≈ 150 cm−1, a center-of-mass separation of Re ≈ 3.17 Å and barriers for internal rotation less than 30 cm−1.  相似文献   

16.
We have previously determined an analytical ab initio six-dimensional potential energy surface for the HCl dimer, and in the present paper we use this potential, with the HCl bond lengths held fixed, in a full (four-dimensional) close-coupling calculation to determine the energies of the lowest 24 vibrational states. These vibrational states involve the intermolecular stretch ν4, the trans-bend tunneling vibration ν5, and the torsion ν6. The highest of the 24 levels is the (ν4ν5ν6)=(111) state, for which we calculate an energy of 200 cm−1 above the (000) state. As well as determining tunneling energies up to 5ν5=183 cm−1, we determine ν4=49 cm−1, 2ν4=93 cm−1, 3ν4=134 cm−1, 4ν4=172 cm−1, ν6=137 cm−1 and ν46=178 cm−1, together with tunneling energies in all these states. Making allowance for the HCl stretching zero-point energy we determine the dissociation energy D0 as 390 cm−1 on this analytical surface. We determine that below 300 cm−1 there are 72 vibrational (J=K=0) states, and below dissociation there are 162 vibrational (J=K=0) states, for this potential surface.  相似文献   

17.
The polarized absorption infrared spectra of CsHSeO4 and CsDSeO4 single crystals and polarized Raman spectra of the CsHSeO4 single crystal were measured at room temperature. The polarization features of the internal vibrations of the HSeO4 ions are predicted on the basis of the X-ray structure assuming strong couping between the vibrations of the two shortest Se---O bonds and an intermediate Se---O bond. The bending methods γOH and δOH of a hydrogen bond appear at 805 cm and 1258 cm−1, respectively. The νOH absorption has the ABC structure due to Fermi resonance of νOH with the overtones of the δOH and γOH vibrations. A similar shape of the νOH band is observed in the Raman spectra. The νOD absorption has a different shape from that of νOH. Intra-chain coupling was observed for the νOH and νOD vibrations.  相似文献   

18.
The experimental and theoretically predicted Raman spectra for the first few alkanes in the homologous series: methane, ethane, propane and butane are presented for the region 2700–3100 cm−1. The structure of the spectra is rather complex. Analysis of the results obtained shows that Fermi resonance occurs between the CH stretching vibrations in the 3000 cm−1 region and the 2ν overtones of deformation vibrations in the low frequency (1450–1500 cm−1) region.  相似文献   

19.
A series of CexPr1−xO2−δ mixed oxides were synthesized by a sol–gel method and characterized by Raman, XRD and TPR techniques. The oxidation activity for CO, CH3OH and CH4 on these mixed oxides was investigated. When the value x was changed from 1.0 to 0.8, only a cubic phase CeO2 was observed. The samples were greatly crystallized in the range of the value x from 0.99 to 0.80, which is due to the formation of solid solutions caused by the complete insertion of Pr into the CeO2 crystal lattices. Raman bands at 465 and 1150 cm−1 in CexPr1−xO2−δ samples are attributed to the Raman active F2g mode of CeO2. The broad band at around 570 cm−1 in the region of 0.3 ≤ x ≤ 0.99 can be linked to oxygen vacancies. The new band at 195 cm−1 may be ascribed to the asymmetric vibration caused by the formation of oxygen vacancies. The TPR profile of Pr6O11 shows two reduction peaks and the reduction process is followed: . The reduction temperature of CexPr1−xO2−δ mixed oxides is lower than those of Pr6O11 or CeO2. TPR results indicate that CexPr1−xO2−δ mixed oxides have higher redox properties because of the formation of CexPr1−xO2−δ solid solutions. The presence of the oxygen vacancies favors CO and CH3OH oxidation, while the activity of CH4 oxidation is mostly related to reduction temperatures and redox properties.  相似文献   

20.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号