首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the field of isotope ratio mass spectrometry, the introduction of an interface allowing the connection of liquid chromatography (LC) and isotope ratio mass spectrometry (IRMS) has opened a range of new perspectives. The LC interface is based on a chemical oxidation, producing CO2 from organic molecules. While first results were obtained from the analysis of low molecular weight compounds, the application of compound-specific isotope analysis by irm-LC/MS to other molecules, in particular biomolecules, is presented here. The influence of the LC flow rate on the CO2 signal and on the observed delta13C values is demonstrated. The limits of quantification for angiotensin III and for leucine were 100 and 38 pmol, respectively, with a standard deviation of the delta13C values better than 0.4 per thousand. Also, accuracy and precision of delta13C values for elemental analyser-IRMS and flow injection analysis-IRMS (FIA-LC/MS) were compared. For compounds with molecular weights ranging from 131 to 66,390 Da, precision was better than 0.3 per thousand, and accuracy varied from 0.1 to 0.7 per thousand. In a second part of the work, a two-dimensional (2D)-LC method for the separation of 15 underivatised amino acids is demonstrated; the precision of delta13C values for several amino acids by irm-LC/MS was better than 0.3 per thousand at natural abundance. For labelled mixtures, the coefficient of variation was between 1% at 0.07 atom % excess (APE) for threonine and alanine, and around 10% at 0.03 APE for valine and phenylalanine. The application of irm-LC/MS to the determination of the isotopic enrichment of 13C-threonine in an extract of rat colon mucosa demonstrated a precision of 0.5 per thousand, or 0.001 atom %.  相似文献   

2.
On-line determination of the oxygen isotopic composition (delta(18)O value) in organic and inorganic samples is commonly performed using a thermal conversion elemental analyzer (TC-EA) linked to a continuous flow isotope ratio mass spectrometry (IRMS) system. Accurate delta(18)O analysis of N-containing compounds (like nitrates) by TC-EA-IRMS may be complicated because of interference of the N(2) peak on the m/z 30 signal of the CO peak. In this study we evaluated the effectiveness of two methods to overcome this interference which do not require any hardware modifications of standard TC-EA-IRMS systems. These methods were (1) reducing the amount of N(2) introduced into the ion source through He dilution of the N(2) peak and (2) an improved background correction on the CO m/z 30 sample peak integration.Our results show that He dilution is as effective as diverting the N(2) peak in order to eliminate this interference. We conclude that the He-dilution technique is a viable method for the delta(18)O analysis of nitrates and other N-containing samples (which are not routinely measured using He dilution) using TC-EA-IRMS, since it can easily be programmed in the standard software of IRMS systems. With the He-dilution technique delta(18)O values of the nitrate isotope standards USGS34, IAEA-N3 and USGS35 were measured using the shortest possible traceability chain to the VSMOW-SLAP scale, and the results were -28.1 +/- 0.1 per thousand, +25.5 +/- 0.1 per thousand and +57.5 +/- 0.2 per thousand, respectively. An improved background correction was also an effective method, but required manual correction of the raw data.  相似文献   

3.
We have developed an automated, continuous-flow isotope ratio mass spectrometry (CF-IRMS) system for the analysis of delta(13)C, delta(18)O, and CO(2) concentration (micromol mol(-1)) ([CO(2)]) from 2 mL of atmospheric air. Two replicate 1 mL aliquots of atmospheric air are sequentially sampled from fifteen 100 mL flasks. The atmospheric sample is inserted into a helium stream and sent through a gas chromatograph for separation of the gases and subsequent IRMS analysis. Two delta(13)C and delta(18)O standards and five [CO(2)] standards are run with each set of fifteen samples. We obtained a precision of 0.06 per thousand, 0.11 per thousand, and 0.48 micromol mol(-1) for delta(13)C, delta(18)O, and [CO(2)], respectively, by analyzing fifty 100 mL samples filled from five cylinders with a [CO(2)] range of 275 micromol mol(-1). Accuracy was determined by comparison with established methods (dual-inlet IRMS, and nondispersive infrared gas analysis) and found to have a mean offset of 0.00 per thousand, -0.09 per thousand, and -0.26 micromol mol(-1) for delta(13)C and delta(18)O, and [CO(2)], respectively.  相似文献   

4.
To study carbohydrate digestion and glucose absorption, time-dependent (13)C enrichment in plasma glucose is measured after oral administration of naturally occurring (13)C-enriched carbohydrates. The isotope enrichment of the administered carbohydrate is low (APE <0.1%) and plasma (13)C glucose measurements are routinely determined with gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) or liquid chromatography/combustion/isotope ratio mass spectrometry (LC/C/IRMS). In this study, plasma glucose was converted into CO(2) by an in-tube reaction with yeast permitting direct measurement of (13)CO(2) in the headspace. Saccharomyces cerevisiae incubated under anaerobic conditions was able to convert sufficient glucose into CO(2) to produce a consistent CO(2) peak in IRMS with little variation in peak area and precise delta(13)C(PDB) values for corn glucose: -11.40 +/- 0.16 per thousand, potato glucose: -25.17 +/- 0.13 per thousand, and plasma glucose: -26.29 +/- 0.05 per thousand. The measurement showed high linearity (R(2) = 0.999) and selectivity and was not affected by the glucose concentration in the tested range of 5-15 mM. Comparison with GC/C/IRMS showed a good correlation of enrichment data: R(2) > 0.98 for both sources of glucose and plasma samples. Commercially available, instant dried baker's yeast was qualitatively and quantitatively comparable with freshly prepared yeast: R(2) > 0.96, slope 1.03 and 1.08 for glucose solutions and plasma, respectively. Thus, yeast conversion of plasma glucose into CO(2) and (13)C measurement applying a breath (13)CO(2) analyzer is an inexpensive, simple and equally accurate alternative to the more expensive and laborious GC/C/IRMS and LC/C/IRMS measurements.  相似文献   

5.
A new procedure for the determination of carbon dioxide (CO(2)) (13)C/(12)C isotope ratios, using direct injection into a GasBench/isotope ratio mass spectrometry (GasBench/IRMS) system, has been developed to improve isotopic methods devoted to the study of the authenticity of sparkling drinks. Thirty-nine commercial sparkling drink samples from various origins were analyzed. Values of delta(13)C(cava) ranged from -20.30 per thousand to -23.63 per thousand, when C3 sugar addition was performed for a second alcoholic fermentation. Values of delta(13)C(water) ranged from -5.59 per thousand to -6.87 per thousand in the case of naturally carbonated water or water fortified with gas from the spring, and delta(13)C(water) ranged from -29.36 per thousand to -42.09 per thousand when industrial CO(2) was added. It has been demonstrated that the addition of C4 sugar to semi-sparkling wine (aguja) and industrial CO(2) addition to sparkling wine (cava) or water can be detected. The new procedure has advantages over existing methods in terms of analysis time and sample treatment. In addition, it is the first isotopic method developed that allows (13)C/(12)C determination directly from a liquid sample without previous CO(2) extraction. No significant isotopic fractionation was observed nor any influence by secondary compounds present in the liquid phase.  相似文献   

6.
A simple modification to a commercially available gas chromatograph isotope ratio mass spectrometer (GC/IRMS) allows rapid and precise determination of the stable isotopes ((13)C and (18)O) of CO(2) at ambient CO(2) concentrations. A sample loop was inserted downstream of the GC injection port and used to introduce small volumes of air samples into the GC/IRMS. This procedure does not require a cryofocusing step and significantly reduces the analysis time. The precisions for delta(13)C and delta(18)O of CO(2) at ambient concentration were +/-0.164 and +/-0.247 per thousand, respectively. This modified GC/IRMS was used to test the effects of storage on the (18)O and (13)C isotopic ratios of CO(2) at ambient concentrations in four container types. On average, the change in the (13)C-CO(2) and (18)O-CO(2) ratios of samples after one week of storage in glass vials equipped with butyl rubber stoppers (Bellco Glass Inc.) were depleted by 0.12 and by 0.20 per thousand, respectively. The (13)C ratios in aluminum canisters (Scotty II and IV, Scott Specialty Gasses) after one month of storage were depleted, on average, by 0.73 and 2.04 per thousand, respectively, while the (18)O ratios were depleted by 0.38 and 1.20 per thousand for the Scotty II and IV, respectively. After a month of storage in electropolished containers (Summa canisters, Biospheric Research Corporation), the (13)C-CO(2) and (18)O-CO(2) ratios were depleted, on average, by 0.26 and enriched by 0.30 per thousand, respectively, close to the precision of measurements. Samples were collected at a mature hardwood forest for CO(2) concentration determination and isotopic analysis. A comparison of CO(2) concentrations determined with an infrared gas analyzer and from sample voltages, determined on the GC/IRMS concurrent with the isotopic analysis, indicated that CO(2) concentrations can be determined reliably with the GC/IRMS technique. The (13)C and (18)O ratios of nighttime ecosystem-respired CO(2), determined from the intercept of Keeling plots, were -26.11 per thousand (V-PDB) and -8.81 per thousand (V-PDB-CO(2)), respectively.  相似文献   

7.
Small-scale developments have been made to an off-the-shelf continuous-flow gas chromatography/isotope-ratio mass spectrometry (CF-GC/IRMS) system to allow high-precision isotopic analysis of methane (CH(4)) and carbon dioxide (CO(2)) at ambient concentrations. The repeatability (1sigma) obtainable with this system is 0.05 per thousand for delta(13)C of CH(4), 0.03 per thousand for delta(13)C of CO(2), and 0.05 per thousand for delta(18)O of CO(2) for ten consecutive analyses of a standard tank. An automated inlet system, which allows diurnal studies of CO(2) and CH(4) isotopes, is also described. The improved precision for CH(4) analysis was achieved with the use of a palladium powder on quartz wool catalyst in the combustion furnace, which increased the efficiency of oxidation of CH(4) to CO(2). The automated inlet further improved the precision for both CH(4) and CO(2) analysis by keeping the routine constant. The method described provides a fast turn-around in samples, with accurate, reproducible results, and would allow a long-term continuous record of CH(4) or CO(2) isotopes at a site to be made, providing information about changing sources of the gases both seasonally and interannually.  相似文献   

8.
The stable isotope composition of nmol size gas samples can be determined accurately and precisely using continuous flow isotope ratio mass spectrometry (IRMS). We have developed a technique that exploits this capability in order to measure delta13C and delta18O values and, simultaneously, the concentration of CO2 in sub-mL volume soil air samples. A sampling strategy designed for monitoring CO2 profiles at particular locations of interest is also described. This combined field and laboratory technique provides several advantages over those previously reported: (1) the small sample size required allows soil air to be sampled at a high spatial resolution, (2) the field setup minimizes sampling times and does not require powered equipment, (3) the analytical method avoids the introduction of air (including O2) into the mass spectrometer thereby extending filament life, and (4) pCO2, delta13C and delta18O are determined simultaneously. The reproducibility of measurements of CO2 in synthetic tank air using this technique is: +/-0.08 per thousand (delta13C), +/-0.10 per thousand (delta18O), and +/-0.7% (pCO2) at 5550 ppm. The reproducibility for CO2 in soil air is estimated as: +/-0.06 per thousand (delta13C), +/-0.06 per thousand (delta18O), and +/-1.6% (pCO2). Monitoring soil CO2 using this technique is applicable to studies concerning soil respiration and ecosystem gas exchange, the effect of elevated atmospheric CO2 (e.g. free air carbon dioxide enrichment) on soil processes, soil water budgets including partitioning evaporation from transpiration, pedogenesis and weathering, diffuse solid-earth degassing, and the calibration of speleothem and pedogenic carbonate delta13C values as paleoenvironmental proxies.  相似文献   

9.
Site-specific carbon isotope composition of organic compounds can provide useful information on their origin and history in natural environments. Site-specific isotope analyses of small amounts of organic compounds (sub-nanomolar level), such as short-chain carboxylic acids and amino acid analogues, have been performed using gas chromatography/pyrolysis/isotope ratio mass spectrometry (GC/pyrolysis/IRMS). These analyses were previously limited to volatile compounds. In this study, site-specific carbon isotope analysis has been developed for non-volatile aromatic carboxylic acids at sub-micromolar level by decarboxylation using a continuous flow elemental analysis (EA)/pyrolysis/IRMS technique. Benzoic acid, 2-naphthylacetic acid and 1-pyrenecarboxylic acid were pyrolyzed at 500-1000 degrees C by EA/pyrolysis/IRMS to produce CO2 for delta13C measurement of the carboxyl group. These three aromatic acids were most efficiently pyrolyzed at 750 degrees C. Conventional sealed-tube pyrolysis was also conducted for comparison. The delta13C values of CO2 generated by the continuous flow technique were within 1.0 per thousand of those performed by the conventional technique, indicating that the new continuous flow technique can accurately analyze the carbon isotopic composition of the carboxyl group in aromatic carboxylic acids. The new continuous flow technique is simple, rapid and uses small sample sizes, so this technique will be useful for characterizing the isotopic signature of carboxyl groups in organic compounds.  相似文献   

10.
In spite of extensive efforts, even the most experienced laboratories dealing with isotopic measurements of atmospheric CO2 still suffer from poor inter-laboratory consistency. One of the complicating factors of these isotope measurements is the presence of N2O, giving rise to mass overlap in the isotope ratio mass spectrometer (IRMS). The aim of the experiment reported here has been twofold: first, the re-establishment of the correction for 'mechanical' interference of N2O in the IRMS, along with its variability and drift, and the best way to quantitatively determine the correction factors. Second, an investigation into secondary effects, i.e. the influence of N2O admitted with the CO2 sample on the "cross contamination" between sample and (pure CO2) working gas. To make the suspected effects better detectable, isotopically enriched CO2 gas with different concentrations of N2O has been measured for the first time. No evidence of secondary effects was observed, from which we conclude that N2O is not a major player in the inter-laboratory consistency problems. Still, we also found that the determination of the 'mechanical' N2O correction needs to be very carefully determined for each individual IRMS, and should be periodically re-determined. We show that the determination of the correction should be performed using CO2/N2O mixtures with concentration ratios around that of the atmosphere, as the extrapolation from pure gas end member behaviour will give erroneous results due to non-linearities. For our IRMS, a VG SIRA series II, we find a correction of 0.23 per thousand for delta45CO2 and 0.30 per thousand for delta46CO2 of atmospheric samples, (with 0.85 per thousand mixing ratio). This implies that the relative ionisation efficiency (E) value associated with this machine is 0.75.  相似文献   

11.
The thermal conversion/elemental analyzer‐isotope ratio mass spectrometer (TC/EA‐IRMS) is widely used to measure the δ18O value of various substances. A premise for accurate δ18O measurement is that the oxygen in the sample can be converted into carbon monoxide (CO) quantitatively or at least proportionally. Therefore, a precise method to determine the oxygen yield of TC/EA‐IRMS measurements is needed. Most studies have used the CO peak area obtained from a known amount of a solid reference material (for example, benzoic acid) to calibrate the oxygen yield of the sample. Although it was assumed that the oxygen yield of the solid reference material is 100%, no direct evidence has been provided. As CO is the analyte gas for δ18O measurement by IRMS, in this study, we use a six‐port valve to inject CO gas into the TC/EA. The CO is carried to the IRMS by the He carrier gas and the CO peak area is measured by the IRMS. The CO peak area thus obtained from a known amount of the injected CO is used to calibrate the oxygen yield of the sample. The oxygen yields of commonly used organic and inorganic reference materials such as benzoic acid (C6H5COOH), silver phosphate (Ag3PO4), calcium carbonate (CaCO3) and silicon dioxide (SiO2) are investigated at different reactor temperatures and sample sizes. We obtained excellent linear correlation between the peak area for the injected CO and its oxygen atom amount. C6H5COOH has the highest oxygen yield, followed by Ag3PO4, CaCO3 and SiO2. The oxygen yields of TC/EA‐IRMS are less than 100% for both organic and inorganic substances, but the yields are relatively stable at the specified reactor temperature and for a given quantity of sample. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A continuous-flow isotope-ratio mass spectrometer (CF-IRMS, custom-made GasBenchII and Delta(plus)Advantage, ThermoFinnigan) was installed on a grassland site and interfaced with a closed-path infrared gas analyser (IRGA). The CF-IRMS and IRGA were housed in an air-conditioned travel van. Air was sampled at 1.5 m above the 0.07-m tall grassland canopy, drawn through a 17-m long PTFE tube at a rate of 0.25 L s(-1), and fed to the IRGA and CF-IRMS in series. The IRMS was interfaced with the IRGA via a stainless steel capillary inserted 0.5 m into the sample air outlet tube of the IRGA (forming an open split), a gas-tight pump, and a sample loop attached to the eight-port Valco valve of the continuous-flow interface. Air was pumped through the 0.25-mL sample loop at 10 mL s(-1) (a flushing frequency of 40 Hz). Air samples were analysed at intervals of approx. 2.8 min. Whole system precision was tested in the field using air mixed from pure CO2 and CO2-free air by means of mass flow controllers. The standard deviation of repeated single measurements was 0.21-0.07 per thousand for delta13C and 0.34-0.14 per thousand for delta18O of CO2 in air with mixing ratios ranging between 200-800 micromol mol(-1). The CO2 peak area measured by the IRMS was proportional to the CO2 mixing ratio (r2 = 1.00), allowing estimation of sample air CO2 mixing ratio from IRMS data. A 1-day long measurement cycle of CO2, delta13C and delta18O of air sampled above the grassland canopy was used to test the system for Keeling plot applications. Delta18O exhibited a clear diurnal cycle (4 per thousand range), but short-term (1-h interval) variability was small (average SD 0.38 per thousand). Yet, the correlation between delta18O and CO2 mixing ratio was relatively weak, and this was true for both the whole data set and 1-h subsets. Conversely, the delta13C of all 541 samples measured during the 25.2-h interval fitted well the Keeling regression (r2 = 0.99), yielding an intercept of -27.40 per thousand (+/-0.07 per thousand SE). Useful Keeling regressions (r2 > 0.9, average r2 = 0.96) also resulted from data collected over 1-h intervals of the 12-h long twilight and dark period. These indicated that 13C content of ecosystem respiration was approx. constant near -27.6 per thousand. The precision of the present system is similar to that of current techniques used in ecosystem studies which employ flask sampling and a laboratory-based CF-IRMS. Sampling (and measurement) frequency is greatly increased relative to systems based on flask sampling, and sampling time (0.025 s per sample) is decreased. These features increase the probability for sampling the entire CO2 range which occurs in a given time window. The system obviates sample storage problems, greatly minimises handling needs, and allows extended campaigns of high frequency sampling and analysis with minimal attendance.  相似文献   

13.
A simple and rapid method to measure naturally occurring delta(13)C values of headspace CO(2) of sparkling drinks has been set up, using direct injections on a gas chromatograph coupled to an isotope ratio mass spectrometer, through a combustion interface (GC/C/IRMS). We tested the method on CO(2) gas from several origins. No significant isotopic fractionation was observed nor influences by secondary compounds eventually present in the gas phase. Standard deviation for these measurements was found to be <0.1 per thousand.  相似文献   

14.
The scope of compound-specific stable isotope analysis has recently been increased with the development of the LC IsoLink which interfaces high-performance liquid chromatography (HPLC) and isotope ratio mass spectrometry (IRMS) to provide online LC/IRMS. This enables isotopic measurement of non-volatile compounds previously not amenable to compound-specific analysis or requiring substantial modification for gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS), which results in reduced precision. Amino acids are an example of such compounds.We present a new chromatographic method for the HPLC separation of underivatized amino acids using an acidic, aqueous mobile phase in conjunction with a mixed-mode stationary phase that can be interfaced with the LC IsoLink for compound-specific delta13C analysis. The method utilizes a reversed-phase Primesep-A column with embedded, ionizable, functional groups providing the capability for ion-exchange and hydrophobic interactions. Baseline separation of 15 amino acids and their carbon isotope values are reported with an average standard deviation of 0.18 per thousand (n = 6). In addition delta13C values of 18 amino acids are determined from modern protein and archaeological bone collagen hydrolysates, demonstrating the potential of this method for compound-specific applications in a number of fields including metabolic, ecological and palaeodietary studies.  相似文献   

15.
The application of (13)C/(12)C in ecosystem-scale tracer models for CO(2) in air requires accurate measurements of the mixing ratios and stable isotope ratios of CO(2). To increase measurement reliability and data intercomparability, as well as to shorten analysis times, we have improved an existing field sampling setup with portable air sampling units and developed a laboratory setup for the analysis of the delta(13)C of CO(2) in air by isotope ratio mass spectrometry (IRMS). The changes consist of (a) optimization of sample and standard gas flow paths, (b) additional software configuration, and (c) automation of liquid nitrogen refilling for the cryogenic trap. We achieved a precision better than 0.1 per thousand and an accuracy of 0.11 +/- 0.04 per thousand for the measurement of delta(13)C of CO(2) in air and unattended operation of measurement sequences up to 12 h.  相似文献   

16.
A computer-controllable mobile system is presented which enables the automatic collection of 33 air samples in the field and the subsequent analysis for delta13C and delta18O stable isotope ratios of a carbon-containing trace gas in the laboratory, e.g. CO2, CO or CH4. The system includes a manifold gas source input for profile sampling and an infrared gas analyzer for in situ CO2 concentration measurements. Measurements of delta13C and delta18O of all 33 samples can run unattended and take less than six hours for CO2. Laboratory tests with three gases (compressed air with different pCO2 and stable isotope compositions) showed a measurement precision of 0.03 per thousand for delta13C and 0.02 per thousand for delta18O of CO2 (standard error (SE), n = 11). A field test of our system, in which 66 air samples were collected within a 24-hour period above grassland, showed a correlation of 0.99 (r2) between the inverse of pCO2 and delta13C of CO2. Storage of samples until analysis is possible for about 1 week; this can be an important factor for sampling in remote areas. A wider range of applications in the field is open with our system, since sampling and analysis of CO and CH4 for stable isotope composition is also possible. Samples of compressed air had a measurement precision (SE, n = 33) of 0.03 per thousand for delta13C and of 0.04 per thousand for delta18O on CO and of 0.07 per thousand for delta13C on CH4. Our system should therefore further facilitate research of trace gases in the context of the carbon cycle in the field, and opens many other possible applications with carbon- and possibly non-carbon-containing trace gases.  相似文献   

17.
Isotope ratio mass spectrometry (IRMS) was used to assess what contribution the technique could make towards the comparative analysis of matchstick samples within the 'normal' framework of a forensic investigation. A method was developed to allow the comparison of samples submitted as a result of an investigation, with the added advantage of rapid sample turn-around expected within this field. To the best of our knowledge this is the first time that wooden safety matches have been analysed using IRMS. In this particular case, bulk stable isotope analysis carrried out on a 'like-for-like' basis could demonstrate conclusively that matches seized from a suspect were different from those collected at the scene of crime. The maximum delta13C variability observed within one box was 2.5 per thousand, which, in conjunction with the error of measurement, was regarded to yield too wide an error margin as to permit differentiation of matchsticks based on 13C isotopic composition alone given that the 'natural' 13C abundance in wood ranges from -20 to -30 per thousand. However, from the delta2H values obtained for crime scene matches and seized matches of -114.5 per thousand and -65 per thousand, respectively, it was concluded that the matches seized were distinctly different from those collected at the crime scene.  相似文献   

18.
Accurate and efficient measurement of the oxygen isotope composition of carbonates (delta(C) (18)O) based on the mass spectrometric analysis of CO(2) produced by reacting carbonate samples with H(3)PO(4) is compromised by: (1) uncertainties associated with fractionation factors (alpha(CO)(2)C) used to correct measured oxygen isotope values of CO(2)(delta(CO(2)(18)O) to delta(C) (18)O; and (2) the slow reaction rates of many carbonates of geological and environmental interest with H(3)PO(4). In contrast, determination of delta(C) (18)O from analysis of CO produced by high-temperature (>1400 degrees C) pyrolytic reduction, using an elemental analyser coupled to continuous-flow isotope-ratio mass spectrometry (TC/EA CF-IRMS), offers a potentially efficient alternative that measures the isotopic composition of total carbonate oxygen and should, therefore, theoretically be free of fractionation effects. The utility of the TC/EA CF-IRMS technique was tested by analysis of carbonates in the calcite-dolomite-magnesite solid-solution and comparing the results with delta(C) (18)O measured by conventional thermal decomposition/fluorination (TDF) on the same materials. Initial results show that CO yields are dependent on both the chemical composition of the carbonate and the specific pyrolysis conditions. Low gas yields (<100% of predicted yield) are associated with positive (>+0.2 per thousand) deviations in delta(C(TC/EA) (18)O compared with delta(C(TDF) (18)O. At a pyrolysis temperature of 1420 degrees C the difference between delta(C) (18)O measured by TC/EA CF-IRMS and TDF (Delta(C(TC/EA,TDF) (18)O) was found to be negatively correlated with gas yield (r = -0.785) and this suggests that delta(C) (18)O values (with an estimated combined standard uncertainty of +/-0.38 per thousand) could be derived by applying a yield-dependent correction. Increasing the pyrolysis temperature to 1500 degrees C also resulted in a statistically significant correlation with gas yield (r = -0.601), indicating that delta(C) (18)O values (with an estimated uncertainty of +/-0.43 per thousand) could again be corrected using a yield-dependent procedure. Despite significant uncertainty associated with TC/EA CF-IRMS analysis, the magnitude of the uncertainty is similar to that associated with the application of poorly defined values of alpha(CO)(2), (C) used to derive delta(C) (18)O from delta(CO(2) (18)O measured by the H(3)PO(4) method for most common carbonate phases. Consequently, TC/EA CF-IRMS could provide a rapid alternative for the analysis of these phases without any effective deterioration in relative accuracy, while analytical precision could be improved by increasing the number of replicate analyses for both calibration standards and samples. Although automated gas preparation techniques based on the H(3)PO(4) method (ISOCARB, Kiel device, Gas-Bench systems) have the potential to measure delta(CO)(2) (18)O efficiently for specific, slowly reacting phases (e.g. dolomite), problems associated with poorly defined alpha(CO)(2), (C) remain. The application of the Principle of Identical Treatment is not a solution to the analysis of these phases because it assumes that a single fractionation factor may be defined for each phase within a solid-solution regardless of its precise chemical composition. This assumption has yet to be tested adequately.  相似文献   

19.
This paper discusses a simple method to determine 17O isotope excess or deficiency ('mass-independent isotopic composition') in CO2 gas. When applying conventional mass spectrometry of CO2 (m/z 44, 45 and 46) to determine the 17O/16O ratio, the 13C/12C ratio has to be established separately. This can be achieved by analysing an aliquot of sample CO2 before and after subjecting it to oxygen isotope exchange with a pool of oxygen with 'normal' 17O/16O ratio, i.e. with Delta17O approximately equal to delta17O-0.516 x delta18O = 0. Cerium oxide has been shown to be practically well suited for the exchange of CO2 oxygen; the reagent is safe and does not produce any contamination. The CO2-CeO2 exchange reaction has 99.8 +/- 0.7% recovery yield. At 650 degrees C this reaction reaches equilibrium in 30 min and, as tested, results in complete oxygen replacement. Delta17O determinations depend on accuracy of CO2 delta measurements: the repeatability of +/-0.015 per thousand (1sigma) in delta(45)R and delta(46)R determination relative to the working reference results in an error of Delta17O as small as +/-0.33 per thousand. Such a precision is sufficient for Delta17O determination in stratospheric CO2. The calculated Delta17O value systematically depends on absolute 17R and 13R ratios in isotopic reference materials, which are presently not yet known with certainty (the 17R value is most important), and may be inadequate for 17O-correction with a = 0.516. Within the present uncertainty, Delta17O determined in 17O-enriched CO2 agrees with the value directly measured in the enriched O2 from which this CO2 was produced. Besides Delta17O determination, investigated CO2-CeO2 equilibration may have several other implications. Fast, complete isotopic exchange of CO2 by reaction with CeO2 may also be employed to get reproducible 17O-correction and, hence, to better monitor small delta13C shifts and to isotopically equilibrate mixtures of CO2 gases.  相似文献   

20.
A two-dimensional gas chromatography/combustion/isotope ratio mass spectrometry (2D-GC/C/IRMS) system was developed for stable carbon isotopic measurements of C(2)-C(5) non-methane hydrocarbons (NMHCs) in biomass burning smoke. The 2D-GC/C/IRMS system successfully improved the accuracy and precision for the measurements of C(4) and C(5) saturated compounds in a smoke sample by selective injection of target compounds into a combustion furnace and consequently allowed us to provide complete baseline separation for all individual NMHCs. The analytical precision of the delta(13)C of each compound was better than 0.5 per thousand for more than 500 pmolC injections and 2.1 per thousand for 30 pmolC injections, which was estimated from replicate analysis of standard gases. This system was applied to the analysis of NMHCs in smoke samples collected from laboratory biomass burning experiments. From the combustion of three fuel materials (rice straw, pine wood, and maize), we found that the isotopic fractionation between fuel material and individual NMHCs is almost independent of the fuel material and thus the delta(13)C values of the fuel materials are reflected in delta(13)C values of most of NMHCs. However, only i-butane emitted from maize combustion showed anomalous (13)C-depletion of -11.6 per thousand relative to the delta(13)C value of maize. Such a large (13)C depletion suggests the specific isotopic fractionation process which is attributed to the maize combustion itself or the chemical properties of i-butane during production from a radical recombination reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号