首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
SrAl12O19:Mn4+是一种用于高显色性白光发光二极管的候选红色荧光材料。本论文研究了Mg2+、Zn2+和Ge4+离子的掺杂效应以及Ge3+、Ca2+和Ba2+离子的取代效应SrAl12O19:Mn4+荧光材料性能的影响。样品通过高温固相反应制备,焙烧温度在1 250~ 1 500℃之间。利用X射线衍射技术表征了材料的相纯度,用荧光激发光谱和发射光谱表征了材料的荧光性能。研究结果指出,与未进行Mg2+或Zn2+掺杂的样品相比,Mg2+或Zn2+离子对Al3+格位的掺杂可以使材料的发光强度提高~60%,其原因被认为是掺杂促进了激活剂Mn4+离子进入晶格,其过程可以表示为:MO+MnO2=MAl''+MnAl·+3OO×(M=Mg,Zn),电子顺磁共振谱支持这一结果。Ge4+离子的掺杂使材料的发光性能明显下降。Ge3+离子可以取代Al3+离子形成全范围的固溶体,其中少量Ge3+离子的掺杂可以使材料的荧光发射强度提高~13%,而掺杂量进一步提高使材料的荧光性能下降。Ca2+和Ba2+对Sr2+的取代仅形成有限范围的固溶体。Ca2+的取代使材料的发光性能提高;而 Ba2+的取代使材料的发光强度下降。  相似文献   

2.
在600℃温度下,采用液相燃烧法合成了Sr2+、Eu2+和Mn2+三掺的BaMgAl10O17(BAM)蓝绿荧光粉。用XRD、SEM和荧光光谱仪分别分析和表征该荧光粉的物相、形貌和光致发光性能。结果表明,液相燃烧法合成BAM的温度明显低于传统的高温固相合成法;合成的纳米棒均匀、无团聚现象;荧光光谱仪分析表明Eu2+、Mn2+离子间存在能量传递,且Sr2+能有效提高BAM的发光强度,约为固相法制备荧光强度的1.8倍。BAM:0.1Eu2+,0.04Mn2+,0.05Sr2+色坐标为(0.146,0.250),属于蓝绿光。  相似文献   

3.
通过静电纺丝法制备Mn~(4+)掺杂的Co_3O_4复合纳米纤维,利用XRD、XPS、BET、SEM和电化学工作站等对材料的结构、成分、形貌和电化学性能进行表征与测试。研究发现,通过Mn~(4+)掺杂,Co_3O_4复合纳米纤维的电化学性能得到明显改善。当nCo∶nMn=20∶2时,相应的复合纤维具有较大比表面积68 m2·g-1,而且该样品呈现出清晰的氧化还原峰,在1 A·g-1的电流密度下,放电比电容量为585 F·g-1,这比纯Co_3O_4纳米纤维的416 F·g-1,有显著提高;循环500圈电容保持率达到82.6%,而纯Co_3O_4纳米纤维则是76.4%。  相似文献   

4.
采用共沉淀法及1 200 ℃后续煅烧4 h,成功制备了CaSb2O6:Bi3+,Eu3+荧光粉,并对其结构及发光性能进行了研究。所制备荧光粉颗粒为六边形类圆饼状,平均尺寸在100~600 nm之间。对CaSb2O6:Bi3+,Eu3+发光的机理分析表明,Bi3+对Eu3+的发光存在高效的敏化与能量传递。当Bi3+和Eu3+的掺杂浓度分别为0.5%和8%,Eu3+位于580 nm(5D07F0 )处的荧光发射显著增强,Bi3+,Eu3+共掺样品的荧光强度是CaSb2O6:Eu3+的10倍左右。调节Bi3+/Eu3+离子掺杂比,色坐标呈现了从蓝、白光到红光的变化,表明该荧光粉可分别作为蓝或红色荧光粉使用,甚至可实现从蓝、白光到红光的自由调控,这为白光LED荧光粉的发展提供了参考。  相似文献   

5.
通过水热法制备了由层状纳米片堆叠而成的花球状Sn_3O_4及x%Ti-Sn O_2/Sn_3O_4(x%为Ti与Sn的物质的量之比)。采用X射线粉末衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱、紫外-可见漫反射光谱、红外光谱和光电流响应等物理化学方法对合成的样品进行表征分析。结果表明,由于Ti~(4+)电负性及离子半径与Sn~(4+)相似,可以很好地进入Sn_3O_4晶格中替代Sn~(4+)形成替代掺杂,但不引起大的晶格畸变。同时,掺入Ti~(4+)后使得一部分Sn~(4+)直接与O结合生成纳米球状Sn O_2颗粒分散覆盖在Sn_3O_4表面,形成Sn O_2/Sn_3O_4异质结。光催化活性表明,x%Ti-Sn O_2/Sn_3O_4不仅具有较强的还原Cr~(6+)能力,而且拥有氧化降解有机污染物甲基橙和酸性橙Ⅱ的能力。催化活性的增强归因于x%Ti-Sn O_2/Sn_3O_4具有比较大的比表面积和更强的光吸收,同时Sn O_2/Sn_3O_4异质结的生成有效地提升了光生电子与空穴的分离效率。  相似文献   

6.
近红外荧光粉在生物活体成像领域展现出重要的应用前景。但活体成像用近红外荧光粉存在种类匮乏、耐温性差等瓶颈问题。采用固相法合成了宽带近红外Ca4HfGe3O12xCr3+(0≤x≤0.09)荧光粉。X射线衍射和能谱分析的结果表明Cr3+离子成功进入Ca4HfGe3O12晶格。在469 nm蓝光激发下,Ca4HfGe3O12∶xCr3+荧光粉发射出690~1 200 nm的宽带近红外光,峰值波长为825 nm (4T2-4A2),半高宽达到141 nm,Cr3+掺杂最佳浓度为0.03。依据激发光谱峰形和寿命衰减行为,证实Cr3+仅占据基质中一种阳离子格位。Ca4HfGe3O12∶0.03Cr3+荧光粉的荧光量子效率为33.63%,该荧光粉发射光谱在400 K下的积分面积为室温下的60.5%,表明该样品具有优良的热稳定性。采用自制近红外荧光粉转换器件照射人手掌和滤波片遮挡的水果,观察到清晰地静脉血管和遮挡水果的轮廓。  相似文献   

7.
采用溶胶-凝胶法制备无定型SiO2包覆CaAl12O19:Mn4+荧光粉,对样品进行XRD、TEM-EDS、FTIR以及发光性能分析。实验结果显示,包覆后样品的XRD图在22°左右出现了一个无定型二氧化硅特征宽峰,且随着SiO2包覆量的增加,该衍射峰的强度增强;FTIR分析发现样品包覆后存在明显的Si-O-Si键。SiO2包覆后CaAl12O19:Mn4+样品的激发和发射光谱峰值强度有所减弱;当包覆比为10%时,所制备样品的光辐照稳定性显著提高。通过对样品80~400 K变温光谱的分析表明,其发射光强度显现先增强后减弱的变化规律;与空白样品相比,二氧化硅包覆后的样品具有更高的热激活能。  相似文献   

8.
采用凝胶-燃烧法制备了稀土Eu3+掺杂的LaMgAl11O19红色荧光粉的前驱粉末, 在低于700℃退火处理时, 得到非晶态样品, 而高于850℃退火处理后为单一六方相结构LaMgAl11O19:Eu3+样品. SEM结果表明, 该法制备的样品为颗粒分布均匀, 粒径在200~400 nm之间的超细粉末. 通过激发光谱和发射光谱研究了Eu3+在LaMgAl11O19基质中的发光性能, 结果显示, 非晶态和晶态La1-xMgAl11O19:x Eu3+样品都可发光, 在613 nm波长光的监测下所得荧光粉的激发光谱为一宽带和系列锐峰, 其最强激发峰出现在蓝光465 nm处, 次强峰为394 nm, 表明该荧光粉与广泛使用的紫外和蓝光LED芯片的输出波长相匹配. 在465 nm波长光的激发下观察到超细LaMgAl11O19粉末中Eu3+的613 nm (5D07F2)强的特征发射, 且随着粉末逐渐成相5D07F2跃迁明显增强, 说明LaMgAl11O19:Eu3+超细粉末可作为白光LED的红色补偿荧光粉.  相似文献   

9.
以共沉淀法与煅烧法联用,成功制备了一系列ZnAl2O4xMn4+样品。通过扫描电镜和X射线粉末衍射测试研究了样品的形貌和物相特征,结果表明尖晶石结构的ZnAl2O4中[AlO6]的八面体位可以有效被Mn4+替代。通过荧光激发和发射光谱研究了样品的发光性能,发现Mn4+在ZnAl2O4体系中掺杂可以显示出明亮的红色发光(发射峰值位于680 nm处)。比较不同Mn4+浓度(Mn与Al的物质的量之比)掺杂样品的发光强度时发现,Mn4+最佳掺杂浓度为0.06%。通过德克斯特公式分析了发光强度与浓度关系,探究浓度猝灭机制,结果表明最邻近离子之间能量传递造成Mn4+浓度猝灭的发生。为了提高Mn4+的发光强度,选择了7种金属离子(Li+、Na+、K+、Ca2+、Sr2+、Sn2+和Ga3+)与Mn4+共掺杂进入ZnAl2O4基质中,其中效果较突出的为Li+和Ga3+,其共掺杂使Mn4+发光强度分别增强0.6倍和1倍。  相似文献   

10.
采用高温固相法制备了Ce、Sm共掺Lu_3Al_5O_(12)荧光粉。通过X射线衍射分析、荧光光谱分析研究了样品的结构、发光特性,并通过理论计算研究了能量传递效率、能量传递的临界距离以及能量传递方式。X射线衍射分析表明所制备的荧光粉具有单一的石榴石结构;荧光光谱分析表明,在464 nm蓝光激发下,Sm~(3+)的引入可增加Lu_3Al_5O_(12)∶Ce,Sm发射光谱中红光成分,并且随着Sm~(3+)浓度的增加,Ce~(3+)发光强度逐渐减弱。计算出Ce~(3+)、Sm~(3+)之间的能量传递效率高达77.42%,确定了Ce~(3+)、Sm~(3+)之间的能量传递机制为偶极-偶极相互作用。  相似文献   

11.
采用水热法辅助合成了纯相Ca2Zn4Ti16O38:Pr3+荧光粉,初始nCa:nZn:nTi=2:4.1:15,煅烧条件为1 050 ℃空气气氛烧结5 h.并以X射线衍射、扫描电镜、紫外可见漫反射光谱和荧光光谱表征了样品的物相组成、微观形貌和光谱性质.合成的荧光粉在高温煅烧后仍较好地保持了球形的微观形态,优化的Pr3+掺杂浓度为0.015.Ca2Zn4Ti16O38:Pr3+荧光粉在471 nm波长激发下发射红光,发射谱通过高斯分峰拟合得到位于605、620和645 nm的3个发射峰,分别对应于Pr3+1D23H4,3P03H63P03F2跃迁.在471 nm波长激发下,Ca2Zn4Ti16O38:Pr3+的614 nm红光发射表现出超长余辉特性,表明该荧光粉是一种能被可见光有效激发的红色长余辉荧光粉.  相似文献   

12.
采用水热法辅助合成了纯相Ca2Zn4Ti16O38∶Pr3+荧光粉,初始nCa∶nZn∶nTi=2∶4.1∶15,煅烧条件为1 050℃空气气氛烧结5 h。并以X射线衍射、扫描电镜、紫外可见漫反射光谱和荧光光谱表征了样品的物相组成、微观形貌和光谱性质。合成的荧光粉在高温煅烧后仍较好地保持了球形的微观形态,优化的Pr3+掺杂浓度为0.015。Ca2Zn4Ti16O38∶Pr3+荧光粉在471 nm波长激发下发射红光,发射谱通过高斯分峰拟合得到位于605、620和645 nm的3个发射峰,分别对应于Pr3+的1D2→3H4,3P0→3H6和3P0→3F2跃迁。在471 nm波长激发下,Ca2Zn4Ti16O38∶Pr3+的614 nm红光发射表现出超长余辉特性,表明该荧光粉是一种能被可见光有效激发的红色长余辉荧光粉。  相似文献   

13.
以尿素为沉淀剂,采用低温水热法结合煅烧过程制备出MgAl2O4∶Er^3+,Yb^3+上转换荧光粉,并对样品的结构、微观形貌及上转换发光性能予以表征。结果表明,随尿素加入量的增大,产物主形貌由六角片状结构向纳米棒状转变,经1100℃煅烧可得纯相镁铝尖晶石结构,且Er^3+和Yb^3+能有效进入MgAl2O4晶格并占据Mg^2+位置形成均匀固溶体。在980 nm光激发下,MgAl2O4∶1.0%(n/n)Er^3+,x%(n/n)Yb^3+(x=0~8.0)荧光粉表现出在524、545 nm处绿光以及658 nm处的强红光发射,红绿光强度均在5.0%(n/n)Yb^3+掺杂时达到最大,但红绿光强度比却在7.0%(n/n)Yb^3+掺杂时达到最大值5.2,这归因于Er^3+-Er^3+之间交叉弛豫(CR)在红光发射过程中所起的重要作用。通过控制荧光粉中Yb^3+的掺杂量,能初步实现对于黄绿光色度的有效调控。  相似文献   

14.
通过高温固相法合成了一系列Sr3La2-xGe3O12:xSm^3+(0≤x≤0.04)红色荧光粉,并对样品的形貌、元素组成、晶体结构、发光性能及热稳定性进行了探究。结果表明:样品Sr3La2Ge3O12:xSm^3+为较宽尺寸分布的颗粒,且结构中仅含有Sr、La、Ge、O、Sm等元素。样品Sr3La1.97Ge3O12:0.03Sm^3+的Rietveld结构精修图与实测XRD图完全吻合,具有六方晶系结构。漫反射测试结果显示基质Sr3La2Ge3O12的带宽为5.54 eV,属于宽带隙材料。在404 nm激发下,样品Sr3La2-xGe3O12:xSm^3+(0≤x≤0.04)的最大发射峰位于601nm处,属于Sm^3+的6H5/2→4L13/2能级跃迁。此外,样品Sr3La1.97Ge3O12:0.03Sm^3+的发光性能最佳,其CIE色坐标为(0.5321,0.4601),色纯度高达94.2%,在298-473 K范围内具有较好的热稳定性,测试温度达到423 K时发射强度仍为室温时的81.6%。  相似文献   

15.
采用硅酸盐作为基质材料,通过高温固相法合成了Li4SrCa(SiO42:Eu3+红色荧光粉。通过X射线粉末衍射、X射线光电子能谱、透射电镜和荧光光谱,对所得样品的物相、形貌及其发光性能进行了表征分析。结果表明,掺入Eu3+后,Li4SrCa(SiO42的晶体结构并没有发生改变。在393 nm光激发下,荧光粉的荧光光谱中693 nm处发射峰强度最强。以693 nm作为监测波长,荧光激发峰分别为361 nm(7F05D4)、375 nm(7F05G3)、413 nm(7F05D3)、393 nm(7F05L6)和464 nm(7F05D2),即样品对近紫外和蓝光有较好的吸收。利用发射光谱研究了Eu3+掺杂浓度(物质的量分数)对荧光粉发光强度的影响。当Eu3+的掺杂浓度x=0.10时,样品发射强度最强,发射红光,其色坐标为(0.637 5,0.353 7)。通过Dexter强度与浓度关系分析了浓度猝灭机制。  相似文献   

16.
采用优化的高温固相方法制备了稀土离子Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2系荧光材料,并对其物相行为、晶体结构、光致发光性能和热稳定性进行了详细研究。结果表明,La_7O_6(BO_3)(PO_4)_2∶Eu~(3+)材料在紫外光激发下能够发射出红光,发射光谱中最强发射峰位于616 nm处,为5D0→7F2特征能级跃迁,Eu~(3+)的最优掺杂浓度为0.08,对应的CIE坐标为(0.610 2,0.382 3);La_7O_6(BO_3)(PO_4)_2∶Tb~(3+)材料在紫外光激发下能够发射出绿光,发射光谱中最强发射峰位于544 nm处,对应Tb~(3+)的5D4→7F5能级跃迁,Tb~(3+)离子的最优掺杂浓度为0.15,对应的CIE坐标为(0.317 7,0.535 2)。此外,对2种材料的变温光谱分析发现Eu~(3+)和Tb~(3+)掺杂的La_7O_6(BO_3)(PO_4)_2荧光材料均具有良好的热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号