首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The octahedral complex, [CoIII(HL)]·9H2O (H4L = (1,8)-bis(2-hydroxybenzamido)-3,6-diazaoctane) incorporating bis carboxamido-N-, bis sec-NH, phenolate, and phenol coordination has been synthesized and characterized by analytical, NMR (1H, 13C), e.s.i.-Mass, UV–vis, i.r., and Raman spectroscopy. The formation of the complex has also been confirmed by its single crystal X-ray structure. The cyclic voltammetry of the sample in DMF ([TEAP] = 0.1 mol dm−3, TEAP = tetraethylammonium perchlorate) displayed irreversible redox processes, [CoIII(HL)] → [CoIV(HL)]+ and [CoIII(HL)] → [CoII(HL)] at 0.41 and −1.09 V (versus SCE), respectively. A slow and H+ mediated isomerisation was observed for the protonated complex, [CoIII(H2L)]+ (pK = 3.5, 25 °C, I = 0.5 mol dm−3). H2Asc was an efficient reductant for the complex and the reaction involved outer sphere mechanism; the propensity of different species for intra molecular reduction followed the sequence: [{[CoIII(HL)],(H2Asc)}–H] <<< {[CoIII(H2L)],(H2Asc)}+ < {[CoIII(HL)],(H2Asc)}. A low value (ca. 3.7 × 10−10 dm3 mol−1 s−1, 25 °C, I = 0.5 mol dm−3) for the self exchange rate constant of the couple [CoIII(HL)]/[CoII(HL)] indicated that the ligand HL3− with amido (N-) donor offers substantial stability to the CoIII state. HSO3 and [CoIII(HL)] formed an outer sphere complex {[CoIII(HL)],(HSO3)}, which was slowly transformed to an inner sphere S-bonded sulfito complex, [CoIII(H2L)(HSO3)] and the latter was inert to reduction by external sulfite but underwent intramolecular SIV → CoIII electron transfer very slowly. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The reaction of Mn(CH3COO)3 2H2O with the carboxyl-rich ligand pyridine-2,6-dicarboxylic acid (H2L) in methanol affords a high-spin (S = 2) hydratedbis-complex. Structure determination has revealed the solid to be [MnIII(H2 L)(L)] [MnIIIL2] 5H2 O: space group P−1;Z = 2;a = 7.527(3)?3,b= 14.260(4)?,c = 16.080(6)?,α = 91.08(3)°,β = 103.58(3)°,γ= 105.41(3)° andV= 1611.2(10)?3. Each ligand is planar and is bonded in the tridentate O2N fashion. The MnO4N2 coordination spheres show large distortions from octahedral symmetry. The lattice is stabilised by an extensive network of O…O hydrogen-bonding involving water molecules and carboxyl functions. Upon dissolution in water, protic redistribution occurs and the complex acts as the mono-basic acid Mn(HL)(L) (pK, 4.3 ±0.05). The deprotonated complex displays high metal reduction potentials: MnIVL2-MnIIIL 2 , 1.05V; MnIIIL 2 MnIIL 2 2− -, 0.28V vs. SCE  相似文献   

3.
The MnIV complex of tetra-deprotonated 1,8-bis(2-hydroxybenzamide)-3,6-diazaoctane (MnIVL) engrossed in phenolate-amido-amine coordination is reduced by HSO3 and SO32− in the pH range 3.15–7.3 displaying biphasic kinetics, the MnIIIL being the reactive intermediate. The MnIIIL species has been characterized by u.v.–vis. spectra {λ max, (ε, dm3 mol−1 cm−1): 285(15 570), 330 sh (7570), 469(6472), 520 sh (5665), pH=5.42}. SO42− was the major oxidation product of SIV; dithionate is also formed (18 ± 2% of [MnIV]T) which suggests that dimerisation of SO3−• is competitive with its fast oxidation by MnIV/III. The rates and activation parameters for MnIVL + HSO3 (SO32−) → MnIIIL; MnIIIL + HSO3 (SO32−) → MnIIL2− are reported at 28.5–45.0 °C (I=0.3 mol dm−3, 10% (v/v) MeOH + H2O). Reduction by SO32− is ca. eight times faster than by HSO3 both for MnIVL and MnIIIL. There was no evidence of HSO3/SO32− coordination to the Mn centre indicating an outer sphere (ET) mechanism which is further supported by an isokinetic relationship. The self exchange rate constant (k22) for the redox couple, MnIIIL/MnIVL (1.5 × 106 dm3 mol−1 s−1 at 25 °C) is reported.  相似文献   

4.
The complex species formed in aqueous solutions (25 °C, I=3.0 mol⋅dm−3 KCl ionic medium) between the V(III) cation and the ligands 6-methylpicolinic acid (MePic, HL), salicylic acid (H2Sal, H2L) and phthalic acid (H2Phtha, H2L) have been studied by potentiometric and spectrophotometric measurements. Application of the least-squares computer program LETAGROP to the experimental emf(H) data, taking into account the hydrolytic species and hydrolysis constants of V(III), indicates that under the employed experimental conditions the complexes [VL]2+, [V(OH)L]+, [V(OH)2L], [V(OH)3L], [VL2]+, [VL3] and [V2OL4] form in the vanadium(III)–MePic system. Were observed the complexes [VL]+, [VL2], [V(OH)L2]2− and [VL3]3− in the vanadium(III)–H2Sal system, and the species [VHL]2+, [VL]+, [V(OH)L], [VHL2], [VL2], [V(OH)L2]2−, [V(OH)2L2]3− and [VL3]3− in the vanadium(III)–H2Phtha system. The stability constants of these complexes were determined by potentiometric measurements, and spectrophotometric measurements were made in order to perform a qualitative characterization of the complexes formed in aqueous solution.  相似文献   

5.
The kinetics and mechanism of iron(II) reduction of cis- α-chloro/bromo(cetylamine)(triethylenetetramine) cobalt(III) surfactant complex ions were studied spectrophotometrically in an aqueous acid medium by following the disappearance of CoIII using an excess of the reductant under pseudo-first-order conditions: [FeII = 0.25 mol dm−3, [H+ = 0.1 mol dm−3, [μ = 1.0 mol dm−3 ionic strength in a nitrogen atmosphere at 303, 308 and 313 K. The reaction was found to be second order and showed acid independence in the range [H+ = 0.05−0.25 mol dm−3. The second order rate constant increased with CoIII concentration and the presence of aggregation of the complex itself altered the reaction rate. The effects of [FeII], [H+] and [ μ] on the rate were determined. Activation and thermodynamic parameters were computed. It is suggested that the reaction of Fe2+(aq) with CoIII complex proceeds by an inner-sphere mechanism.  相似文献   

6.
A minute quantity (10−6 mol dm−3) of iodide catalysed oxidation of l-glutamic acid by CeIV has been studied in H2SO4 and SO 4 2− media. The reaction was first order each in [CeIV] and [I]. The order with respect to [l-glutamic acid] was less than unity (0.71). Increase in [H2SO4] decreased the reaction rate. The added HSO 4 and SO 4 2− decreased the rate of reaction. The added product, succinic acid, had no effect on the reaction rate, whereas added CeIII retarded the reaction. The ionic strength and dielectric constant did not have any significant effect on the rate of reaction. The active species of oxidant was Ce(SO4)2. A suitable mechanism was proposed. The activation parameters were determined with respect to the slow step of the mechanism. The thermodynamic quantities were also determined and discussed.  相似文献   

7.
The interaction of (1,8)bis(2-hydroxybenzamido)3,6-diazaoctane (LH2) with iron(III) in acidic medium resulted in the formation of a mononuclear complex, Fe(LH3)4+ which further yielded, [Fe(LH2)]3+, [Fe(LH)]2+, and [FeL]+ due to protolytic equilibria. The formation of [Fe(LH3)]4+ was investigated under varying [H+]T (0.01–0.10 mol dm−3) and [Fe3+]T (1.00 × 10−3–1.70 × 10−2, [L]T = 1.0 × 10−4 mol dm−3) (I = 0.3 mol dm−3, 10% MeOH + H2O, 25.0 °C). The reaction was reversible and displayed monophasic kinetics; the dominant path involved Fe(OH)(OH2) 5 2+ and LH 4 2+ . The mechanism is essentially a dissociative interchange (I d) and the dissociation of the aqua ligand from the encounter complex, [Fe(OH2)5OH2+, H4L2+] is rate limiting. The ligand binds iron(III) in a bidentate ([Fe(H3L)]4+), tetradentate ([Fe(H2L)]3+), pentadentate ([Fe(HL)]2+) and hexadentate fashion ([FeL]+) under varying pH conditions. Iron(III) promoted deprotonation of the amide and phenol moieties and chelation driven deprotonation of the sec-NH 2 + of the trien spacer unit are in tune with the above proposition. The mixed ligand complexes, [FeIII(LH)(X)] (X = N 3 , NCS, ACO) are also reversibly formed in solution thus indicating that there is a replaceable aqua ligand in the complex conforming to its octahedral coordination, [Fe(LH)(OH2)]2+, the bound ligand is protonated at the sec-NH site. Despite the multidentate nature of the ligand the FeIII complexes are prone to reduction by sulfur(IV) and ascorbic acid. The redox reactions of different iron(III) species, FeIII(LHi) which involved ternary complex formation with the reductants have been investigated kinetically as a function of pH, [SIV]T and [ascorbic acid]T. The substantial pK perturbation of the bound ascorbate in [Fe(LH)(HAsc/Asc)]+/0 (ΔpK {[Fe(LH)(HAsc)] − HAsc − } > 6) is considered to be compelling evidence for chelation of HAsc/Asc2− leading to hepta coordination of iron(III) in the ascorbate complexes. A novel binuclear complex with composition, [FeIII 2C20N4H35O11 (NO3)] has been synthesized and characterized by i.r., u.v.–vis, e.s.r., e.s.i.-Mass, 57Fe Mossbauer spectroscopy and magnetic moment measurements. The complex was isolated as a mixture of two forms C 1 and C 2 with 75.3 and 24.7%, respectively as computed from Mossbauer data. The isomer shift (δ) (quadrupole splitting, ΔE Q) are 0.32 mm s−1 (0.75 mm s−1) and 0.19 mm s−1 (0.68 mm s−1) for C 1 and C 2, respectively. The variable temperature magnetic moment measurements (10–300 K) of the sample showed that C 1 is an oxo dimer exhibiting antiferromagnetic interaction between the iron(III) atoms (S 1 = S 2 = 5/2, J = − 120 cm−1) while the dimer C 2 is a high spin species (S 1 = S 2 = 5/2) and exhibits normal paramagnetism obeying the Curie law. The cyclic voltametry response of the sample (DMF, [TEAP] = 0.1 mol dm−3) displayed quasi-reversible responses at − 0.577 V and − 1.451 V (versus SCE). This is in tune with the fact that the C 2 species reverts rapidly in solution to the relatively more stable oxo-bridged dimer (C 1) which is reduced in two sequential steps: C1 + e → [FeL]+ + FeII; [FeL]+ + e → FeIIL, the high labilility of the FeII complex is attributed to the irreversibility. The X-band e.s.r. spectrum of the polycrystalline sample at room temperature displayed a weak (unresolved) band at g = 4.2 and a strong band at g = 2.0 with hyperfine splitting due to the coordinated nitrogen (I = 1). At 77 K the band at g = 4.2 is intensified while that at g = 2 is broadened to the extent of near disappearance in agreement with the presence of the exchange coupled iron(III) centres. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. An erratum to this article is available at .  相似文献   

8.
The kinetics of the electron-transfer reactions between promazine (ptz) and [Co(en)2(H2O)2]3+ in CF3SO3H solution ([CoIII] = (2–6) × 10−3 m, [ptz] = 2.5 × 10−4 m, [H+] = 0.02 − 0.05 m, I = 0.1 m (H+, K+, CF3SO 3 ), T = 288–308 K) and [Co(edta)] in aqueous HCl ([CoIII] = (1 − 4) × 10−3 m, [ptz] = 1 × 10−4 m, [H+] = 0.1 − 0.5 m, I = 1.0 m (H+, Na+, Cl), T = 313 − 333 K) were studied under the condition of excess CoIII using u.v.–vis. spectroscopy. The reactions produce a CoII species and a stable cationic radical. A linear dependence of the pseudo-first-order rate constant (k obs) on [CoIII] with a non-zero intercept was established for both redox processes. The rate of reaction with the [Co(en)2(H2O)2]3+ ion was found to be independent of [H+]. In the case of the [Co(edta)] ion, the k obs dependence on [H+] was linear and the increasing [H+] accelerates the rate of the outer-sphere electron-transfer reaction. The activation parameters were calculated as follows: ΔH = 105 ± 4 kJ mol−1, ΔS = 93 ± 11 J K−1mol−1 for [Co(en)2(H2O)2]3+; ΔH = 67 ± 9 kJ mol−1, ΔS = − 54 ± 28 J K−1mol−1 for [Co(edta)].  相似文献   

9.
The effect of the concentration of water on the rate of reduction of molecular nitrogen to hydrazine by niobium(iii) hydroxide in alkaline H2O−MeOH and D2O−MeOD mixtures was studied. In both cases, the reaction rate is maximum when [H2O]=4 mol L−1, and the inverse isotopic effect (K D/k H>1) is observed when [H2O]<20 mol L−1. Similar regularity was observed for the reaction of hydrogen elimination. It was found that HD is formed in the H2O−MeOH system in the presence of D2. The conclusion was made that the ratedetermining stage in hydrazine formation is the transfer of a hydride ion to the dinitrogen molecule coordinated to the binuclear NbIII center. A kinetic scheme satisfactorily explaining the effect of the concentration of water ([H2O]=1.5−49.0 mol L−1) on the reaction rate constant was proposed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1600–1604, September, 1997.  相似文献   

10.
Substitution inertcis-diaqua CrIII complexes: cis-[(Lx−)CrIII(H2O)2](3−x)+ derived from N-donor ligands (Lx−) viz., bipyridine and 1,10-phenanthroline (x = 0) and N,O-donor ligands viz., nitrilotriacetate and anthranilate N,N-diacetate (x = 3) titrate as diprotic acids in aqueous solution and enhance the acidity of otherwise weakly acidic boric acid (H3BO3) producing mononuclear and binuclear mixed ligand CrIII-borate complexes: [(L)Cr(H2BO4)]x− and [(L)Cr(BO4)Cr(L)](1−2x)+ respectively through coordination of the H2O and/or OH ligands, cis-coordinated in the CrIII-complexes on the electron deficient BIII-atom in H3BO3 with release of protons. Deprotonation of the parent CrIII-complexes and their reactions with H3BO3 have been investigated by potentiometric method in aqueous solution,I = 0.1 mol dm−3 (NaNO3) at 25 ±0.1°C. The equilibrium constants have been evaluated by computerized methods and the tentative stoichiometry of the reactions have been worked out on the basis of the speciation curves  相似文献   

11.
The oxidation of glyoxylic acid (HGl) by MnIVL {L4− = tetra deprotonated 1,8-bis(2-hydroxybenzamido)-3,6-diazaoctane} was investigated in the pH range 1.67-10.18, at 25-45 °C and 0.5 M ionic strength. The reaction exhibited biphasic kinetics with MnIIIL as the reactive intermediate. MnIV was reduced to MnII. The products of oxidation of HGl were identified as formic acid and CO2 in acidic medium, and oxalate in basic medium, consistent with the stoichiometry: −Δ[MnIV]/−Δ[HGl] = 1. In acidic medium, both MnIVL and MnIIIL formed outer-sphere adducts with the neutral HGl {HC(OH)2COOH} molecule, with an association constant Qav of 28 and 70 M−1, respectively. A similar adduct formation was not observed for the glyoxylate mono anion {Gl, CH(OH)2(CO2)} and glyoxylate dianion {Gl2−, CH(OH)(O)CO2}. The rate and activation parameters for the various paths are reported and an outer-sphere electron transfer mechanism is suggested.  相似文献   

12.
Summary Manganese(III) acetate was prepared by the electrolytic oxidation of Mn(OAc)2 in aqueous AcOH. The electro-generated manganese(III) species was characterised by spectroscopic and redox potential studies. The kinetics of oxidation of pyridoxine (PRX) by manganese(III) in aqueous AcOH were investigated and is first order with respect to [MnIII]. The effects of varying [MnIII], [PRX], added manganese(II), pH and added anions such as AcO, F, Cl and ClO inf4 sup− and SO inf4 sup2− were studied. The rate decreased slowly with increasing [H+] up to 0.2 mol dm−3 and increased steeply thereafter. The orders in [PRX] and [MnII] were unity and inverse fractional, respectively, in both low and high [H+] ranges. The dependence of reaction rate on temperature was studied and activation parameters were computed from Arrhenius and Eyring plots. A mechanism consistent with the observed results is proposed and discussed.  相似文献   

13.
The redox reactions of thiosulfate with four iron(III) complexes having phenolate-amide-amine coordination, FeIII(L){L = 1,2-bis(2-hydroxybenzamido)ethane, L1; 1,3-bis(2-hydroxybenzamido)propane, L2; 1,5-bis(2-hydroxybenzamido)3-azapentane, L3; and 1,8-bis(2-hydroxybenzamido)3,6-diazaoctane, L4} have been investigated in 10% v/v MeOH + H2O and I = 0.3 mol dm−3. At constant pH (~ 4.8) and under pseudo-first order conditions of [S2O 3 2− ] the reaction obeyed the rate law : − d[FeIII(L)]/dt = k obs [FeIII(L)] + k obs where k obs denotes the observed rate constant of thiosulfate decomposition; k obs = a[S2O 3 2− ] + b[S2O 3 2− ] T 2 is valid for all the complexes, particularly at pH < 6, while k obs = [H+][S2O 3 2− ] T 2 is consistent with the rate law for thiosulfate decomposition proposed earlier. The rate data (k obs) were analysed on the basis of the reactivities of various species of FeIII(L) generated by the equilibrium protonation of the sec-NH of dien and trien spacer units resulting in the ring opening (for [FeIII(L3/L4)]), and acid base equilibrium of the aqua ligand bound to the iron(III) centre ([FeIII(L)(OH2) n ]). The redox activities, both for second and third order paths, show the ligand dependencies : L4<L3<L1<L2 conforming to the fact that the complexes tend to be less susceptible to electron transfer from S2O 3 2− with (i) the increase of the number of chelate rings, (ii) the decrease of overall charge, and (iii) the decrease of ring size offered by the amine moiety (from six membered to five membered one as for [FeIII(L1/L2)(OH2)2]+. There was no evidence for the formation of inner sphere thiosulfato complex, the possibility of the formation of the outer sphere ion-pairs, [Fe(L/HL)(OH2)n +/2+, S2O 3 2− ] with low equilibrium constant value may not be excluded. In view of this, the outer sphere electron transfer (ET) mechanism is the most likely possibility.  相似文献   

14.
The oxidation of [RuIII(hedta)(H2O)]=(1) to its RuIV monomeric complex at a glassy carbon electrode is abserved to promote oxidation of alcohols bearing an a-hydrogen (i-PrOH benzyl alcohol,sec-phenethyl alcohol). Tertiary substitution blocks the oxidation (t-BuOH). The oxidation of the alcohols is detected by an enhancement in the current of the RuIV/III waves at potentials above 0.96V, caused by scavenging (reduction) of RuIV by the alcohols. Binuclear complexes which possess RuIV bridged by oxo to either a second RuIV or to RuIII in species of composition [LRuORuL]n−, L=hedta3−, fail to oxidize the alcohols. The terminal oxo moiety attached to RuIV is postulated to facilitate the oxidation of primary and secondary alcohols in a manner analogous to Meyer's [RuO(trpy)(bpy)]2+ catalyst. The dissociation of the (III,IV) binuclear complex into its monomers provides a pathway which increases catalytic activity at the expense of the inactive (III, IV) binuclear complex's concentration. TMC 2531  相似文献   

15.
The reactions between Fe(Phen)32+[phen = tris-(1,10) phenanthroline] and Co(CN)5X3− (X = Cl, Br or I) have been studied in aqueous acidic solutions at 25 °C and ionic strength in the range I = 0.001–0.02 mol dm−3 (NaCl/HCl). Plots of k2 versusI, applying Debye–Huckel Theory, gave the values −1.79 ± 0.18, −1.65 ± 0.18 and 1.81 ± 0.10 as the product of charges (ZAZB) for the reactions of Fe(Phen)32+ with the chloro-, bromo- and iodo- complexes respectively. ZAZB of ≈ −2 suggests that the charge on these CoIII complexes cannot be −3 but is −1. This suggests the possibility of protonation of these CoIII complexes. Protonation was investigated over the range [H+] = 0.0001 −0.06 mol dm−3 and the protonation constants Ka obtained are 1.22 × 103, 7.31 × 103 and 9.90 × 102 dm6 mol−3 for X = Cl, Br and I, respectively.  相似文献   

16.
The reductions of [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+, by TiIII in aqueous acidic solution have been studied spectrophotometrically. Kinetic studies were carried out using conventional techniques at an ionic strength of 1.0 mol dm−3 (LiCl/HCl) at 25.0 ± 0.1 °C and acid concentrations between 0.015 and 0.100 mol dm−3. The second-order rate constant is inverse—acid dependent and is described by the limiting rate law:- k2 ≈ k0 + k[H+]−1,where k=k′Ka and Ka is the hydrolytic equilibrium constant for [Ti(H2O)6]3+. Values of k0 obtained for [Co(CN)5NO2]3−, [Co(NH3)5NO2]2+ and [Co(NH3)5ONO]2+ are (1.31 ± 0.05) × 10−2 dm3 mol−1 s−1, (4.53 ± 0.08) × 10−2 dm3 mol−1 s−1 and (1.7 ± 0.08) × 10−2 dm3 mol−1 s−1 respectively, while the corresponding k′ values from reductions by TiOH2+ are 10.27 ± 0.45 dm3 mol−1 s−1, 14.99 ± 0.70 dm3 mol−1 s−1 and 17.93 ± 0.78 dm3 mol−1 s−1 respectively. Values of K a obtained for the three complexes lie in the range (1–2) × 10−3 mol dm−3 which suggest an outer-sphere mechanism.  相似文献   

17.
Just a “reducing” sugar —namely, D -mannose—is a starting material in the synthesis of a mixed-valence complex of manganese in the oxidation states +III and +IV . Ba2[MnIIIMnIV(β-D -ManfH−5)2]Cl⋅14 H2O (Manf=mannofuranose; the structure of the anion is shown on the right) is prepared in aqueous solution by oxidation of an analogous Mn2III complex with oxygen. In neutral solutions the MnIIIMnIV binuclear complex is formed by disproportionation of the Mn2III precursor.  相似文献   

18.
The kinetics of the oxidation of promazine by trisoxalatocobaltate(III) were studied in the presence of a large excess of the cobalt(III) in tris buffer solution using u.v.–vis spectroscopy ([CoIII] = (0.6 − 2) × 10−3 M, [ptz] = 6 × 10−5 M, pH = 6.6–7.8, I = 0.1 M (NaCl), T = 288−308 K, l = 1 cm). The reaction proceeds via two consecutive reversible steps. In the first step, the reaction leads to formation of cobalt(II) species and a stable cationic radical. In the second step, cobalt(III) is reduced to cobalt(II) ion and a promazine radical is oxidized to the promazine 5-oxide. Linear dependences of the pseudo-first-order rate constants (k 1 and k 2) on [CoIII] with a non-zero intercept were established for both redox processes. Rates of reactions decreased with increasing concentration of the H+ ion indicating that the promazine and its radical exist in equilibrium with their deprotonated forms, which are reactive reducing species. The activation parameters for reactions studied were as follows: ΔH = 44 ± 1 kJ mol−1, ΔS = −100 ± 4 JK−1 mol−1 for the first step and ΔH = 25 ± 1 kJ mol−1, ΔS = −169 ± 4 J K−1 mol−1 for the second step, respectively. Mechanistic consequences of all the results are discussed.  相似文献   

19.
Unsaturated heteropolyanions (HPA) [PW11O39]7− stabilize TiIV hydroxo complexes in aqueous solutions (Ti: PW11 [PW11O39]7−⪯12, pH 1–3). Spectral studies (optical,17O and31P NMR, and IR spectra) and studies by the differential dissolution method demonstrated that TiIV hydroxo complexes are stabilized through interactions of polynuclear TiIV hydroxo cations with heteropolyanions [PW11TiO40 5− formed. Depending on the reaction conditions, hydroxo cations Ti n−1O x H y m+ either add to oxygen atoms of the W−O−Ti bridges of the heteropolyanions to form the complex [PW11TiO40·Ti n−1O x H y ] k− (at [HPA]=0.01 mol L−1) or interact with TiIV of the heteropolyanions through the terminal o atom to give the polynuclear complexes [PW11O39Ti−O−Ti n−1O x H y ]q− (at [HPA]=0.2 mol L−1). When the complexes of the first type were treated with H2O2, TiIV ions added peroxo groups. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 914–920, May, 1997.  相似文献   

20.
The complex [LMnIV(O)3MnIVL](PF6)2 (1), where L is 1,4 7-trimethyl-1,4,7-triazacyclononane, catalyzes a highly efficient stereoselective oxygenation of saturated hydrocarbons in the presence of H2O2. A carboxylic acid is an obligatory component of the reaction mixture, while acetonitrile or acetone can be used as solvent. The reaction occurs, forming alkyl hydroperoxide, ketone, and alcohol. Substitution at the tertiary carbon atom proceeds more easily than that at the secondary carbon atom, whereas primary C−H bonds are rather inactive. Oxidation of alkanes and alcohols with peroxy acids catalyzed by complex 1 occurs with lower efficiency. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2459–2466, December, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号