首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report on what is believed to be the first singly resonant cw optical parametric oscillator (SRO) that is directly pumped by a diode laser. The SRO consists of a 38-mm-long periodically poled LiNbO(3) crystal in a four-mirror signal-resonant ring cavity. Pumped by 2.5 W of 925-nm diode-laser radiation, the SRO generates 480 mW of single-frequency idler radiation at 2.1mum . The wavelengths of the signal and the idler output are tuned in the ranges of 1.55 to 1.70mum and 2.03 to 2.29mum, respectively, by tuning the wavelength of the diode laser from 924.0 to 925.4 nm.  相似文献   

2.
We demonstrate single-frequency operation of a cw quasi-phase-matched singly resonant optical parametric oscillator (SRO). We obtained widely tunable output from 1.66 to 1.99 mum (signal) and from 2.29 to 2.96 mum (idler) by employing a periodically poled lithium niobate multigrating chip. Using a single-frequency miniature Nd:YAG ring laser as a pump source results in SRO output with high spectral purity and frequency stability(<10 MHz/min), which can be continuously tuned over 2 GHz without mode hops. We obtain a minimum SRO threshold of 260mW by resonating the pump wave in the SRO cavity.  相似文献   

3.
We describe a compact all-solid-state continuous-wave, singly resonant optical parametric oscillator (SRO) based on periodically poled RbTiOAsO4. The SRO is pumped at 1.064 microm by a Nd:YVO4 laser, which is itself pumped by a 3-W diode laser. Using the intracavity technique produced an oscillation threshold for the SRO of only 1.6 W (diode-laser power). For 3 W of diode pump power some 65 mW was obtained in the (nonresonant) idler (wavelength 3.52 microm). Temperature tuning over the range 10-100 degrees C resulted in tuning ranges of 1.52-1.54 and 3.41-3.54 microm for the signal and the idler waves, respectively. Importantly, relaxation oscillations were absent.  相似文献   

4.
Chaitanya Kumar  S.  Devi  K.  Samanta  G. K.  Ebrahim-Zadeh  M. 《Laser Physics》2011,21(4):782-789
Stable, high-power, second-harmonic-generation (SHG) of a compact CW Ytterbium (Yb) fiber laser at 1064 nm into the green and its use as a pump source for CW singly-resonant optical parametric oscillator (SRO) is demonstrated. Using a simple single-pass SHG configuration in MgO:sPPLT, as much as 9.6 W of single-frequency green radiation at 532 nm is generated from 30 W of fundamental power at a conversion efficiency of 32.7% in a Gaussian spatial profile with a beam quality factor of M 2 < 1.3. Thermal effects have been investigated at different fundamental power levels and various thermal management schemes are employed to maximize the second-harmonic power. The green source is successfully deployed to pump a CW SRO tunable over 855–1408 nm, generating up to 2.1 W of idler at 1168 nm. The peak-to-peak idler power stability is better than 10.7% over 40 min, with beam quality factor M 2 < 1.26 for the idler and M 2 < 1.52 for the signal.  相似文献   

5.
We present a 1.5μm continuous-wave (CW) single-frequency intracavity singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO is placed inside the ring cavity of a single-frequency 1.06μm Nd:YVO4 laser pumped by a laser diode. The device delivers a maximum single-frequency output power of 310 mW at a resonant signal wavelength of 1.57 μm. The signal wave could be tuned from 1.57 to 1.59 μm by temperature tuning of PPLN crystal over the range of 130 - 170℃.  相似文献   

6.
We report on a green-pumped continuous-wave singly resonant optical parametric oscillator (cw SRO) based on MgO-doped periodically poled LiNbO3. Operating the SRO at crystal temperatures between 40.0°C to 80.0°C an idler wavelength range of 1406–1451 nm can be accessed. The system provides stable single-frequency idler radiation of more than 300 mW at a pump power of 2 W while featuring a low threshold (<1.2 W). Above a pump power of 2.1 W we observe multimode operation, which is similar to the behavior reported for infrared-pumped SROs. To show the applicability of the device we demonstrate Doppler-free saturation spectroscopy of the cesium D2 line using the signal wave and frequency stabilization to a crossover resonance of the D2 transition.  相似文献   

7.
We report on what is to our knowledge the first optical parametric oscillator (OPO) pumped by microsecond pulses from a wavelength-tunable solid-state laser. The singly resonant OPO (SRO) is based on a periodically poled LiNbO3 crystal and pumped with 2.1-micros-long pulses from an actively Q-switched Yb fiber laser. At an average fiber laser power of 3.6 W, the SRO generates 1.9-micros-long pulses with a repetition rate of 25 kHz and an average power of 560 mW at 3360 nm. The SRO was tuned from 1518 to 1634 nm (signal) and from 3145 to 3689 nm (idler) via the crystal temperature and poling period. By all-electronic tuning of the fiber laser wavelength over 19 nm, tuning of the mid-infrared idler wavelength over 195 nm was achieved.  相似文献   

8.
A watt-level, single-frequency, continuous-wave (cw) singly resonant optical parametric oscillator (OPO) based on MgO:sPPLT is described. Pumped in the green by a frequency-doubled cw diode-pumped Nd:YVO(4) laser at 532 nm, the OPO can provide up to 1.59 W of single-frequency idler output with a linewidth of ~7 MHz at pump depletions of as much as 67%. Using a compact ring resonator and optimized focusing in a 30 mm crystal, a singly resonant oscillation threshold of 2.84 W has been obtained under single-pass pumping. With a single grating period of 7.97 microm, continuous signal and idler coverage over 852-1417 nm is obtained by temperature tuning between 61 degrees C and 236 degrees C. The influence of thermal lensing on idler output power across the SRO tuning range is also verified.  相似文献   

9.
We describe a compact all-solid-state continuous-wave singly resonant optical parametric oscillator (SRO) with a minimal pump-power requirement. The SRO is based on periodically poled LiNbO(3) as the nonlinear material and is pumped by a 1-W diode-pumped Nd:YVO(4) minilaser at 1.064 microm . By exploiting the intracavity pumping technique in a 50-mm crystal, we have achieved SRO operation threshold at a diode pump power of only 310 mW.At 1 W of input diode power, the SRO delivers 70 mW of output power in the nonresonant idler at 3.66 microm , at a photon conversion efficiency of 55%. Multiparameter tuning of the SRO yields a signal wavelength range from 1.45 to 1.60 microm and an idler wavelength range from 3.16 to 4.02 microm in the mid infrared. The device is characterized by robust turnkey operation and long-term amplitude-stable performance.  相似文献   

10.
红外激光光源在微量气体、高分辨率光谱分析和量子光学研究等领域具有重要的应用.本文利用锁定单共振光学参量振荡器内腔标准具的方案获得了无跳模连续调谐的红外激光输出,理论和实验研究了红外激光的强度噪声特性,分析了影响强度噪声的因素.通过控制非线性晶体的温度和标准具调制信号实现了对红外激光强度噪声的抑制.当控制非线性晶体工作温度为60℃,内腔标准具调制信号为8 kHz时,单共振光学参量振荡器输出信号光和闲置光的强度噪声分别降低了11和8 dB.  相似文献   

11.
My TH  Drag C  Bretenaker F 《Optics letters》2008,33(13):1455-1457
A widely tunable continuous intracavity-frequency-doubled singly resonant optical parametric oscillator based on MgO-doped periodically poled stoichiometric lithium tantalate crystal is described. The idler radiation resonating in the cavity is frequency doubled by an intracavity BBO crystal. Pumped in the green, this system can provide up to 485 mW of single-frequency orange radiation. The system is continuously temperature tunable between 1170 and 1355 nm for the idler, 876 and 975 nm for the signal, and between 585 and 678 nm for the doubled idler. The free-running power and frequency stability of the system have been observed to be better than those for a single-mode dye laser.  相似文献   

12.
We present a stable, high-power, fiber-laser-pumped, continuous-wave (cw), singly resonant optical parametric oscillator (SRO) for the mid-infrared in an output-coupled (OC) configuration, providing 17.5 W of total output power at 61% extraction efficiency. Using a single-frequency, cw Yb fiber laser at 1064 nm and a 50-mm-long MgO:PPLN crystal, through optimization of signal output coupling we generate up to 9.8 W of signal power in the near-infrared together with 7.7 W of idler power for 28.6 W of pump, while in the absence of output coupling, 8.6 W of idler power is generated for the same pump power at 30% efficiency. The SRO is tunable over 360 nm in the idler range. The deployment of signal output coupling results in a total tuning of 513 nm (120 nm of signal, 393 nm of idler) over which watt-level output power can be extracted. Through careful control of thermal effects we achieve a long-term peak-to-peak idler power stability of 5% over 14 hours near room temperature. The output beams have TEM00 spatial profile with M 2<1.28 for the idler and M 2<1.37 for the signal.  相似文献   

13.
We describe a cw optical parametric oscillator (OPO) with multigrating periodically poled LiTaO(3) . Pumped by a single-frequency 532-nm laser, the OPO emits single-frequency radiation at wavelengths from 0.77 to 1.73mum with as much as 60 mW of output power. Mode-hop-free operation for as long as 50 min, a low frequency drift (<70MHz/h), and as much as 700-MHz continuous frequency tuning of signal and idler are demonstrated.  相似文献   

14.
3 is demonstrated. The pump wave is provided by a frequency-doubled miniature Nd:YAG ring laser and is resonantly enhanced in the SRO cavity, resulting in an external threshold of 200 mW. Stable single-frequency emission in the 1000–1135 nm range has been obtained with 2 GHz continuous tunability and signal/idler linewidths <160 kHz. Received: 25 August 1997  相似文献   

15.
We report a continuous-wave singly resonant optical parametric oscillator (SRO) with more than 12 W of idler power at 3414 nm when it was operated at 30°C. The SRO was directly pumped by a single-frequency, ytterbium-doped fiber laser with 49 W linear polarization pump powers, and based on 50 mm long periodically poled MgO:LiNbO3 crystal (PPMgLN) in two-mirror linear cavity with 30.5 μm grating period. It’s pump power at threshold was 5.4 W. The slope-efficiency and quantum-limited performance reached 26 and 79.2%, respectively. The beam polarization matched the ee + e interaction in crystal. The idler waves were temperature tuned in the range of 3654 to 3811 nm and 3248 to 3414 nm based on two 50 mm long PPMgLN with 29.5 and 30.5 μm grating period. To the best of our knowledge, this is the highest continuouswave mid-IR output obtained for a fiber laser pumped optical parametric oscillator (OPO).  相似文献   

16.
4 (KTP) optical parametric oscillators (OPOs) with pump and idler resonant cavities. With a linear two-mirror cavity the pump power at threshold was 70 mW. The single-frequency signal and idler output wavelengths were tuned in the range of 1025 to 1040 nm and 1250 to 1380 nm by tuning the dye laser in the range of 565 to 588 nm. With a dual three-mirror cavity the threshold was 135 mW. Pumped by 500 mW of 578 nm radiation the 1040 nm single-frequency signal wave output power was 84 mW. Power and frequency stable operation with a spectral bandwidth of less than 9 MHz was obtained by piezo-electrically locking the length of the pump resonant cavity to the dye laser wavelength. Similar performance was achieved by placing the idler resonant OPO inside the resonator of the dye laser. With this system power stable and single-frequency operation was achieved with a spectral bandwidth of less than 11 MHz for the idler wave. Received: 3 February 1998/Revised version: 9 March 1998  相似文献   

17.
We report on a diode-laser pumped cw optical parametric oscillator (OPO) based on quasi-phase-matched periodically poled lithium tantalate. Pumped by the 2.3-W single-frequency, nearly diffraction-limited 925-nm output of an InGaAs diode master-oscillator power amplifier, the pump and signal resonant OPO generates a single-frequency idler wave with an output of as much as 244 mW. The wavelengths of the signal and idler waves are widely tunable in the range 1.55-2.3mum by use of different poling periods (27.3 to 27.9mum) and by variation of the crystal temperature in the range 70-190 degrees C.  相似文献   

18.
We report a singly resonant optical parametric oscillator (SRO) based on a ZnGeP(2) crystal directly pumped by a lamp-pumped Q-switched CrTmHo:YAG laser. The IR was tunable from 4.7 to 7.8 microm via crystal angle tuning. A maximum optical to optical efficiency of 56% was obtained from the pump (2.09 microm) to total IR at a pump energy of 6.5 mJ. The corresponding idler energy was 1.45 mJ. The SRO was measured to have a slope efficiency of 64% and a threshold of 1 mJ. The spatial beam quality of the idler, characterized by the M(2) parameter, was 1.38 when the SRO was pumped at 2.5 times threshold. These results show that ZnGeP(2) optical parametric oscillators directly pumped by a CrTmHo:YAG laser can be operated efficiently, while maintaining good IR beam quality.  相似文献   

19.
A new optical parametric oscillator (OPO) for the mid-infrared wavelength region of 3-3.8mum with an idler output power of up to 1.5 W has been developed. The singly resonant OPO is pumped by a single-mode, 10-W, continuous-wave Nd:YAG laser and consists of a bow-tie ring cavity with a fan-out periodically poled lithium niobate crystal and a low-finesse intracavity air-spaced etalon. The single-frequency idler output can be continuously tuned over 24 GHz with 700-mW power by tuning of the pump laser. The tuning was demonstrated by recording of an absorption line of ethane with photoacoustic spectroscopy.  相似文献   

20.
刘建丽  刘勤  李宏  李鹏  张宽收 《中国物理 B》2011,20(11):114215-114215
We report a low noise continuous-wave (CW) single-frequency 1.5-μm laser source obtained by a singly resonant optical parametric oscillator (SRO) based on periodically poled lithium niobate (PPLN). The SRO was pumped by a CW single-frequency Nd:YVO4 laser at 1.06 μm. The 1.02 W of CW single-frequency signal laser at 1.5 μm was obtained at pump power of 6 W. At the output power of around 0.75 W, the power stability was better than ±1.5% and no mode-hopping was observed in 30 min and frequency stability was better than 8.5 MHz in 1 min. The signal wavelength could be tuned from 1.57 to 1.59 μm by varying the PPLN temperature. The 1.5-μm laser exhibits low noise characteristics, the intensity noise of the laser reaches the shot noise limit (SNL) at an analysis frequency of 4 MHz and the phase noise is less than 1 dB above the SNL at analysis frequencies above 10 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号