首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A gas chromatography–mass spectrometry (GC–MS) method was investigated for the simultaneous analysis of two types of endocrine disrupting compounds (EDCs), i.e., alkylphenol ethoxylates and brominated flame retardants (BFRs), by extraction and derivatization followed by GC–MS. Different solid phase extraction (SPE) cartridges (Cleanert PestiCarb, C18, Cleanert-SAX and Florosil), solvents (toluene, tetrahydrofuran, acetone, acetonitrile and ethyl acetate) and bases (NaHCO3, triethylamine and pyridine) were tested and the best chromatographic analysis was achieved by extraction with Strata-X (33 μm, Reverse Phase) cartridge and derivatization with heptafluorobutyric anhydride at 55 °C under Na2CO3 base in hexane. It was observed that APE together with lower substituted PBBs (PBB1, PBB10, PBB18 and PBB49), HBCD and TBBPA can be determined simultaneously under the same GC conditions. This simple and reliable analytical method was applied to determining trace amounts of these compounds from wastewater treatment plant samples. The recoveries of the target compounds from simulated water were above 60 %. The limit of detection ranged from 0.01 to 0.15 μg L−1 and the limit of quantification ranged from 0.05 to 0.66 μg L−1. There were no appreciable differences between filtered and unfiltered wastewater samples from Leeuwkil treatment plant although concentration of target analytes in filtered influent was slightly lower than the concentration of target analytes in unfiltered influent water. The concentrations of the target compounds from the wastewater treatment were determined from LOQ upwards.

  相似文献   

2.
A gas chromatography–tandem mass spectrometry (GC–MS/MS) method has been developed for the determination of selected pharmaceutical residues (carbamazepine, salicylic acid, clofibric acid, ibuprofen, 2-hydroxy-ibuprofen, fenoprofen, naproxen, ketoprofen, diclofenac, and triclosan) in sewage influent and roughly primary-treated effluent. The method involved solid-phase extraction (SPE) with polymeric sorbents, and two SPE cartridges were compared for the extraction and elution of the targeted compounds in complex matrices. A successful chemical derivatization of carbamazepine and acidic compounds using N,O-bis(trimethylsilyl) trifluoroacetamide +10% trimethylchlorosilane is also described. The quantification limits of the analytical procedure ranged from 30 to 60?ng?L?1 for 500?mL of wastewater. The best recovery rates (72–102%) in spiked effluent samples were obtained with Phenomenex Strata-X? cartridges. Detection limits (S/N?=?3) were estimated at between 1 and 18?ng?L?1. The reported GC–MS/MS method significantly reduces the strong matrix effects encountered with more expensive LC-MS/MS techniques. Application of the developed method showed that most selected analytes were detected at concentrations ranging from low µg?L?1 to trace level ng?L?1 in Montreal's wastewater treatment plant effluent and influent, as well as in the receiving waters at more than 8?km downstream of the effluent outfall. The rugged alternative analytical method is suitable for the simultaneous analysis of carbamazepine and pharmaceutical acidic residues in wastewater samples from influents and effluents that have undergone rough primary treatment.  相似文献   

3.
A headspace solid phase microextraction (HS-SPME) method coupled with gas chromatography and MS detection (GC/MS) was optimized for the simultaneous determination of 21 target Pharmaceuticals and Personal Care Products (PPCPs) in water samples. The analytes included fragrances, UV-filters, antiseptics, estrogens, anti-inflammatory drugs, and pesticides. An on-fiber SPME derivatization, using silyl reagents, was performed for the analysis of more polar acidic compounds. An experimental design approach was applied to systematically investigate and optimize the operative parameters affecting the extraction recovery, namely: extraction temperature and time, derivatization time, desorption temperature and time. The optimum operating conditions were: extraction time of 125?min at a temperature of 40?°C; derivatization time of 30.5?min; desorption time of 2?min at a temperature of 300?°C. Under these conditions, good reproducibility was assessed as RDS% values ≤10% for underivatized PPCPs and ≤20% for derivatized compounds. The method detection limits (LOD) were between 0.7 and 9.0?ng?L?1, with the highest values in the range 2.5–9.0?ng?L?1 for the derivatized analytes. Method accuracy was evaluated on spiked tap water samples: recoveries varied from 85 to 103% and from 75 to 110% for non-derivatized and derivatized compounds, respectively.  相似文献   

4.
According to the European Water Framework Directive, environmental assessment of organic compounds should be made in whole‐water samples, but due to their hydrophobicity and strong attraction to organic content these compounds can be found bound to suspended particle matter or in the dissolved fraction. In this work, the extraction of musk compounds was studied in whole‐water samples exhibiting different amounts of dissolved organic carbon and suspended particulate matter using polyethersulfone preconcentration technique. Matrix effects in estuarine and wastewater (both influent and effluent) were evaluated for filtered and unfiltered samples. For unfiltered samples, estuarine water exhibited matrix effects <20%, while for effluent it was up to 48% and for influent ranged from 85 to 99%. To compensate matrix effects and determine total concentrations in unfiltered samples, different quantification approaches were tested: the use of deuterated analogues and standard additions. Standard additions provided the best results for unfiltered samples. Finally, filtered and unfiltered samples were analyzed using both polyethersulfone preconcentration and membrane‐assisted solvent extraction and results showed a good agreement between the two methods. In both cases unfiltered samples provided concentrations 1.5–2.6 times higher than filtered samples.  相似文献   

5.
《Comptes Rendus Chimie》2016,19(8):963-970
In the last few decades, the presence of pharmaceutical products in the environment is known under the name of emerging contaminants. These substances can enter the aquatic environment via different sources, as parent compounds, metabolites or a combination of both. In this work, we have investigated the presence of four pharmaceutical active compounds belonging to the group of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), in wastewater, surface water and drinking water of Algiers, which have a direct impact on the Mediterranean Sea. The target analytes (ibuprofen (IBU), naproxen (NAP), ketoprofen (KET), and diclofenac (DIC)), were extracted from the water samples by using Solid Phase Extraction Oasis® HLB Cartridges; the identification and quantification were realized by Gas Chromatography–Mass Spectrometry (GC–MS). To obtain the best resolution and precision, N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) was used as the derivatization reagent and ibuprofen-d3 was used as the internal standard. The obtained recoveries were good, ranging from 82% for ketoprofen to 120% for naproxen with relatively small standard deviations (≤20%). The target compounds were detected in wastewater, influent/effluent with concentrations ranging from 155.5 to 6554 ng/L, implicating removal efficiencies of wastewater treatment plants (WWTPs), between 30.3 and 95%. The surface water was also contaminated with pharmaceuticals from 72.9 ng/L for diclofenac to 228.3 ng/L for naproxen. In addition, the occurrence of ibuprofen and ketoprofen in drinking water, at concentrations of 142.1 and 110.9 ng/L, respectively, attracts concerns about possible impacts on human health.  相似文献   

6.
A simple and sensitive analytical method for the determination of fluoxetine, estrone and selected pesticides and endocrine disruptors has been proposed for wastewater analysis by gas chromatography–mass spectrometry (GC–MS). A switchable solvent was produced with N,N-dimethylbenzylamine by changing its hydrophobic properties by the addition of CO2 for protonation. Sodium hydroxide was added to switch the solubility of the extraction solvent and to allow phase separation in the sample/standard medium. Analytical parameters affecting the extraction outputs such as volume of switchable solvent, concentration and volume of sodium hydroxide, mixing type and period were investigated to improve the extraction recovery of the selected analytes. Under the optimum conditions, limits of detection and limits of quantification for the analytes were calculated in the ranges of 0.16–8.6?ng mL?1 and 0.54–29?ng mL?1, respectively. The developed method was successfully applied to synthetic wastewater and two municipal wastewater samples. None of the selected analytes were detected in the samples. High recovery values demonstrated that the proposed method was reliable and applicable to complex matrices.  相似文献   

7.
An analytical method for the identification of eight plant phytoestrogens (biochanin A, coumestrol, daidzein, equol, formononetin, glycitein, genistein and prunetin) in soy products and wastewater samples was developed using gas chromatography coupled with ion trap mass spectrometry (GC/MS–MS). The phytoestrogens were derivatized as their trimethylsilyl ethers with trimethylchlorosilane (TMCS) and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA). The phytoestrogens were isolated from all samples with liquid–liquid extraction using ethyl acetate. Daidzein-d4 and genistein-d4 labeled standards were used as internal standards before extraction and derivatization. The fragmentation patterns of the phytoestrogens were investigated by isolating and fragmenting the precursor ions in the ion-trap and a typical fragmentation involved the loss of a methyl and a carbonyl group. Two characteristic fragment ions for each analyte were chosen for identification and confirmation. The developed methodology was applied to the identification and confirmation of phytoestrogens in soy milk, in wastewater effluent from a soy-milk processing plant, and in wastewater (influent and effluent) from a treatment plant. Detected concentrations of genistein ranged from 50,000 μg/L and 2000 μg/L in soy milk and in wastewater from a soy-plant, respectively, to 20 μg/L and <1 μg/L for influent and effluent from a wastewater treatment plant, respectively.  相似文献   

8.
A method using on-line solid-phase microextraction (SPME) on a carbowax-templated fiber followed by liquid chromatography (LC) with ultraviolet (UV) detection was developed for the determination of triclosan in environmental water samples. Along with triclosan, other selected phenolic compounds, bisphenol A, and acidic pharmaceuticals were studied. Previous SPME/LC or stir-bar sorptive extraction/LC-UV for polar analytes showed lack of sensitivity. In this study, the calculated octanol–water distribution coefficient (log D) values of the target analytes at different pH values were used to estimate polarity of the analytes. The lack of sensitivity observed in earlier studies is identified as a lack of desorption by strong polar–polar interactions between analyte and solid-phase. Calculated log D values were useful to understand or predict the interaction between analyte and solid phase. Under the optimized conditions, the method detection limit of selected analytes by using on-line SPME-LC-UV method ranged from 5 to 33 ng?L?1, except for very polar 3-chlorophenol and 2,4-dichlorophenol which was obscured in wastewater samples by an interfering substance. This level of detection represented a remarkable improvement over the conventional existing methods. The on-line SPME-LC-UV method, which did not require derivatization of analytes, was applied to the determination of TCS including phenolic compounds and acidic pharmaceuticals in tap water and river water and municipal wastewater samples.
Figure
Schematic diagram of the On-line solid-phase microextraction  相似文献   

9.
A fully automated method has been developed for determining eight macrocyclic musk fragrances in wastewater samples. The method is based on headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC-MS). Five different fibres (PDMS 7 μm, PDMS 30 μm, PDMS 100 μm, PDMS/DVB 65 μm and PA 85 μm) were tested. The best conditions were achieved when a PDMS/DVB 65 μm fibre was exposed for 45 min in the headspace of 10 mL water samples at 100 °C. Method detection limits were found in the low ng L?1 range between 0.75 and 5 ng L?1 depending on the target analytes. Moreover, under optimized conditions, the method gave good levels of intra-day and inter-day repeatabilities in wastewater samples with relative standard deviations (n?=?5, 1,000 ng L?1) less than 9 and 14 %, respectively. The applicability of the method was tested with influent and effluent urban wastewater samples from different wastewater treatment plants (WWTPs). The analysis of influent urban wastewater revealed the presence of most of the target macrocyclic musks with, most notably, the maximum concentration of ambrettolide being obtained in WWTP A (4.36 μg L?1) and WWTP B (12.29 μg L?1), respectively. The analysis of effluent urban wastewater showed a decrease in target analyte concentrations, with exaltone and ambrettolide being the most abundant compounds with concentrations varying between below method quantification limit (<MQL) and 2.46 μg L?1.
Figure
Scheme of a HS-SPME followed by GC-MS to determine macrocyclic musk fragrances in wastewater samples  相似文献   

10.
A sensitive and robust method using solid-phase extraction and ultrasonic extraction for preconcentration followed by ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS–MS) has been developed for determination of 19 biocides: eight azole fungicides (climbazole, clotrimazole, ketoconazole, miconazole, fluconazole, itraconazole, thiabendazole, and carbendazim), two insect repellents (N,N-diethyl-3-methylbenzamide (DEET), and icaridin (also known as picaridin)), three isothiazolinone antifouling agents (1,2-benzisothiazolinone (BIT), 2-n-octyl-4-isothiazolinone (OIT), and 4,5-dichloro-2-n-octyl-isothiazolinone (DCOIT)), four paraben preservatives (methylparaben, ethylparaben, propylparaben, and butylparaben), and two disinfectants (triclosan and triclocarban) in surface water, wastewater, sediment, sludge, and soil. Recovery of the target compounds from surface water, influent, effluent, sediment, sludge, and soil was mostly in the range 70–120?%, with corresponding method quantification limits ranging from 0.01 to 0.31?ng?L?1, 0.07 to 7.48?ng?L?1, 0.01 to 3.90?ng?L?1, 0.01 to 0.45?ng?g?1, 0.01 to 6.37?ng?g?1, and 0.01 to 0.73?ng?g?1, respectively. Carbendazim, climbazole, clotrimazole, methylparaben, miconazole, triclocarban, and triclosan were detected at low ng?L?1 (or ng?g?1) levels in surface water, sediment, and sludge-amended soil. Fifteen target compounds were found in influent samples, at concentrations ranging between 0.4 (thiabendazole) and 372?ng?L?1 (methylparaben). Fifteen target compounds were found in effluent samples, at concentrations ranging between 0.4 (thiabendazole) and 114?ng?L?1 (carbendazim). Ten target compounds were found in dewatered sludge samples, at concentrations ranging between 1.1 (DEET) and 887?ng?g?1 (triclocarban).  相似文献   

11.
In this work the development and validation of a new procedure for the simultaneous determination of 9 nitro and polycyclic musk compounds: musk ambrette (MA), musk ketone (MK), musk mosken (MM), celestolide (ADBI), phantolide (AHMI), tonalide (AHTN), traseolide (ATII), cashmeran (DPMI) and galaxolide (HHCB) in environmental water samples (estuarine and wastewater) using microextraction by packed sorbent (MEPS) followed by large volume injection-gas chromatography–mass spectrometry (LVI-GC–MS) was carried out. Apart from the optimization of the different variables affecting MEPS (i.e., nature of the sorbent, nature of the solvent elution, sample load, and elution/injection volume) extraction recovery was also evaluated, not only for water samples but also for environmental water matrices such as estuarine and waste water. The use of two deuterated analogs ([2H3]-AHTN and [2H15]-MX) was successfully evaluated in order to correct matrix effect in complex environmental matrices such as influent samples from wastewater treatment plants. Method detection limits (MDLs) ranged from 5 to 25 ng L−1, 7 to 39 ng L−1 and 8 to 84 ng L−1 for influent, effluent and estuarine samples, respectively. Apparent recoveries were higher than 75% for all target compounds in all the matrices studied (estuarine water and wastewater) and the precision of the method, calculated as relative standard deviation (RSD), was below 13.2% at 200 ng L−1 concentration level and below 14.9% at low level (20 ng L−1 for all the target analytes, except for AHTN which was set at 40 ng L−1 and HHCB at 90 ng L−1, due to the higher MDL values presented by those target compounds). Finally, this MEPS procedure was applied to the determination of the target analytes in water samples, including estuarine and wastewater, from two estuaries, Urdaibai (Spain) and Adour (France) and an established stir-bar sorptive extraction-liquid desorption/large volume injection-gas chromatography–mass spectrometry (SBSE-LD/LVI-GC–MS) method was performed in parallel for comparison. Results were in good agreement for all the analytes determined, except for DPMI.  相似文献   

12.
A method for the determination of catecholamine derivatives in human urine is proposed that includes the derivatization of target compounds on a solid-phase extraction cartridge and determination of the analytes by a UHPLC method with tandem mass-spectrometric detection. 9-Fluorenyl-methoxycarbonyl chloride was used as the derivatization agent. The limits of detection for the analytes were 2.5 ng mL?1 for 9-fluorenyl-methoxycarbonyl-adrenaline, 5 ng mL?1 for 9-fluorenyl-methoxycarbonyl-octopamine, and 25 ng mL?1 for 9-fluorenyl-methoxycarbonyl-dopamine. The proposed procedure was tested on real samples obtained from volunteers.  相似文献   

13.
Two gas chromatography/mass spectrometry (GC/MS) methods for the determination of polybrominated biphenyls (PBBs) by isotope dilution analysis (IDA) using 13C12‐PBB 153 in the presence of polybrominated diphenyl ethers (PBDEs) were compared. Recovery of 13C12‐PBB 153 which was added to the extracted lipids before sample purification was commenced ranged from 88–117% (mean value 98.2 ± 8.9%). Nevertheless, IDA analysis of PBBs using 13C12‐labelled congeners is limited by the potential co‐elution of PBBs with polybrominated diphenyl ethers (PBDEs). The pair PBB 153 and BDE 154 was inspected since M+ and [M–2Br]+ ions of 13C12‐PBB 153 and BDE 154 were only separated by 4 u. Gas chromatography/electron ionization high‐resolution mass spectrometry with selected ion monitoring (GC/EI‐HRMS‐SIM) was suitable when m/z 475.7449 and m/z 477.7429 were used for 13C12‐PBB 153 because they are below the monoisotopic peak of the [M–2Br]+ fragment ion of hexaBDEs at m/z 479.7. Gas chromatography/electron capture negative ion tandem mass spectrometry selected reaction monitoring (GC/ECNI‐MS/MS‐SRM) measurements could be applied because 13C12‐PBB 153 and BDE 154 were separated by GC on a 25‐m Factor Four CP‐Sil 8MS column. Comparative measurements with GC/EI‐HRMS‐SIM and GC/ECNI‐MSMS‐SRM were carried out with samples of Tasmanian devils from Tasmania (Australia), an endangered species due to a virus epidemy which has already proved fatal for half of the population. Both techniques verified concentrations of PBB 153 in the range 0.3–11 ng/g lipids with excellent agreement of the levels in all but two samples. The PBB residue pattern demonstrated that PBB pollution originated from the previous discharge with technical hexabromobiphenyl which is dominated by PBB 153. Other congeners such as PBB 132 and PBB 138 were detected in the Tasmanian devils but the proportions relative to PBB 153 were lower than in the technical product. Samples of healthy and affected Tasmanian devils showed no significant difference in the PBB pollution level. The PBB concentrations in the Tasmanian devils were significantly below those causing toxic effects. On the other hand, PBB concentrations were one level or even higher than PBDEs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.

Rapid, inexpensive, and efficient sample-preparation by dispersive liquid–liquid microextraction (DLLME) then gas chromatography with flame ionization detection (GC–FID) have been used for extraction and analysis of BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) in water samples. In this extraction method, a mixture of 25.0 μL carbon disulfide (extraction solvent) and 1.00 mL acetonitrile (disperser solvent) is rapidly injected, by means of a syringe, into a 5.00-mL water sample in a conical test tube. A cloudy solution is formed by dispersion of fine droplets of carbon disulfide in the sample solution. During subsequent centrifugation (5,000 rpm for 2.0 min) the fine droplets of carbon disulfide settle at the bottom of the tube. The effect of several conditions (type and volume of disperser solvent, type of extraction solvent, extraction time, etc.) on the performance of the sample-preparation step was carefully evaluated. Under the optimum conditions the enrichment factors and extraction recoveries were high, and ranged from 122–311 to 24.5–66.7%, respectively. A good linear range (0.2–100 μg L−1, i.e., three orders of magnitude; r 2 = 0.9991–0.9999) and good limits of detection (0.1–0.2 μg L−1) were obtained for most of the analytes. Relative standard deviations (RSD, %) for analysis of 5.0 μg L−1 BTEX compounds in water were in the range 0.9–6.4% (n = 5). Relative recovery from well and wastewater at spiked levels of 5.0 μg L−1 was 89–101% and 76–98%, respectively. Finally, the method was successfully used for preconcentration and analysis of BTEX compounds in different real water samples.

  相似文献   

15.
An ion-pair high-performance liquid chromatography with ultraviolet detection method for the determination of cyromazine, melamine and its biodegradation products (ammeline, ammelide, cyanuric acid and biuret) was developed. C18 column was utilised to separate the six analytes with a mobile phase consisting of perchloric acid-ammonia solution and acetonitrile, under gradient elution and variable flow rate. The detection wavelengths were 205 nm for cyanuric acid and biuret and 222 nm for cyromazine, melamine, ammeline and ammelide. For analysis of sediment samples, the extraction solution containing acetonitrile, ammonia and water (80:10:10 by volume) was used to extract the analytes from sediment matrix. Using the extraction method for the spiked sediment sample, high linearity of matrix-matched standard curve could be obtained for the six analytes. The method detection limit was 0.1 μg g?1 for melamine and cyromazine, 0.2 μg g?1 for ammeline and ammelide, 1.2 μg g?1 for cyanuric acid and 1.0 μg g?1 for biuret in sediment matrix. The recoveries of these compounds were 70.1–98.3% and the relative standard deviations were 0.5–4.4%. Finally, the proposed method was successfully applied to the analysis of the sediment sample near the wastewater outlet of a melamine-producing factory.  相似文献   

16.
A method has been established for the determination of four pharmaceutically active compounds (ibuprofen, ketoprofen, naproxen and clofibric acid) in water samples using dynamic hollow fiber liquid-phase microextraction (HF/LPME) followed by gas chromatography (GC) injection port derivatization and GC–mass spectrometric (MS) determination. Dynamic HF/LPME is a novel approach to microextraction that involves the use of a programmable syringe pump to move the liquid phases participating in the extraction so as to facilitate the process. Trimethylanilinium hydroxide (TMAH) was used as derivatization reagent for the analytes to increase their volatility and improve chromatographic separation. Parameters that affect extraction efficiency (selection of organic solvent, volume of organic solvent, agitation in the donor phase, plunger movement and extraction time) were investigated. Under optimal conditions, the proposed method provided good enrichment factors up to 251, reproducibility ranging from 3.26% to 10.61%, and good linearity from 0.2 to 50 μg/L. The limits of detection ranged between 0.01 and 0.05 μg/L (S/N = 3) using selective ion monitoring. This method was applied to the determination of the four pharmaceutically active compounds in tap water and wastewater collected from a drain in the vicinity of a hospital.  相似文献   

17.
A simultaneous derivatization/air‐assisted liquid–liquid microextraction technique has been developed for the sample pretreatment of some parabens in aqueous samples. The analytes were derivatized and extracted simultaneously by a fast reaction/extraction with butylchloroformate (derivatization agent/extraction solvent) from the aqueous samples and then analyzed by GC with flame ionization detection. The effect of catalyst type and volume, derivatization agent/extraction solvent volume, ionic strength of aqueous solution, pH, numbers of extraction, aqueous sample volume, etc. on the method efficiency was investigated. Calibration graphs were linear in the range of 2–5000 μg/L with squared correlation coefficients >0.990. Enhancement factors and enrichment factors ranged from 1535 to 1941 and 268 to 343, respectively. Detection limits were obtained in the range of 0.41–0.62 μg/L. The RSDs for the extraction and determination of 250 μg/L of each paraben were <4.9% (n = 6). In this method, the derivatization agent and extraction solvent were the same and there is no need for a dispersive solvent, which is common in a traditional dispersive liquid–liquid microextraction technique. Furthermore, the sample preparation time is very short.  相似文献   

18.
A method for the enantioselective determination of the amphetamine-derived designer drugs 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxyethylamphetamine (MDE) based on their derivatization with (-)-1-(9-fluorenyl)ethyl chloroformate (FLEC) is described. The proposed procedure entails preconcentration and derivatization of the analytes into C18-packed solid-phase extraction cartridges, chromatographic separation of the diastereomers originated in a C18 column under gradient elution, and UV detection at 265 nm. Compared with the solution derivatization approach the described procedure increased analyte responses by factors of 28–58. The reliability of the method has been tested by analysing plasma and urine samples spiked with the analytes in the 0.015–1.0 μg mL?1 concentration interval. The proposed conditions provided adequate linearity, and coefficients of variation ranging from 5% to 14% in plasma, and from 3% to 12% in urine. The recoveries of the analytes were of 78%–126% and 78%–128% in plasma and urine, respectively. The limits of detection (LODs) obtained for all the analytes were 5 ng mL?1 in both biological matrices.  相似文献   

19.
《Analytical letters》2012,45(15):3083-3110
ABSTRACT

A solid phase extraction (SPE) system has been modified with cationic surfactants and evaluated for extraction and preconcentration of trace phenolic compounds contaminants in water at low ppb concentrations. Cationic surfactants such as cetyl trimethyl ammonium bromide (CTAB) has been steadily adsorbed on the surface of C-18 bonded silica, and the ionized functional group of the surfactant can then act as an ion–exchange site to attract the ionized phenolic compounds from water samples. The method includes enrichment of the phenolic compounds by the surfactant-loaded solid phase extraction system, followed by elution of the analyte with methylene chloride and derivatization of the phenolic compounds with acetic anhydride. Thirty-two phenolic analytes were identified and quantitatively determined by this method; identification and quantification of the compounds is performed with GC/FID using 2-bromophenol as internal standard. SPME analysis with this method was linear over 3-6 orders of magnitude, with linear correlation coefficient (R2) greater than 0.96. Experimentally determined FID detection limits ranged from ~30 ppt for methyl-substituted phenols to ~0.1ppb for phenol and chloro-substituted phenols. We tested the influence of sample pH, the loading amount of surfactant on the solid phase, and the volume and matrixes of the sample were studied. Absolute recoveries from pure water spiked with 0.2 ppb phenolic compounds were 96 – 103%. The method has been applied to analysis of various natural waters, including ground water, lake water, seawater, and wastewater. Recoveries from ground water, lake water, seawater, and wastewater were 92 – 106%, 75 – 93%, 87 – 103%, 86 – 99%, respectively. Therefore, the new technique proved to be an excellent tool for trace enrichments of phenolic compounds at low ppb concentration of these analytes, from different natural water samples.  相似文献   

20.
A rapid and sensitive method has been developed for the simultaneous determination of four avermectins and one milbemycin residues in bovine tissue. The isolation of the analytes from muscle and liver samples was accomplished utilizing a pressurized solvent extractor. The optimized extraction procedure using acetonitrile/water (40:60, v/v) as extraction solvent, was automatically carried out at 100 °C and 10 MPa, applying two static cycles for 3 min. The extracts were cleaned up on a C18 solid-phase extraction cartridge and analyzed by liquid chromatography with fluorescence detection after derivatization. Mean recoveries of the five analytes from fortified samples were between 84.8 and 101.8%, with relative standard deviations lower than 10.8%. The limit of detection and quantification were in the ranges of 0.1–0.2 and 0.5–0.6 μg kg–1, respectively. The application of the newly developed method was demonstrated by analyzing bovine meat samples from market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号