首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Nanocomposites composed of cuprous oxide (Cu2O) and graphene were synthesized via reduction of copper(II) in ethylene glycol. This material possesses the specific features of both Cu2O and graphene. Its morphology was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Cyclic voltammetry was used to evaluate the electrochemical response of a glass carbon electrode (GCE) modified with the nanocomposite towards dopamine (DA). Compared to the bare GCE, the Cu2O nanoparticles modified electrode and the graphene modified electrode, the nanocomposites modified electrode displays high electrocatalytic activity in giving an oxidation peak current that is proportional to the concentration of DA in the range from 0.1 to 10???M,with a detection limit of 10?nM (S/N?=?3). The modified electrode shows excellent selectivity and sensitivity even in the presence of high concentration of uric acid and can be applied to determine DA in real samples with satisfactory results.
Figure
Cu2O/Graphene nanocomposites were successfully prepared, Cu2O particles were uniformly distributed on transparent graphene and no particles scattered out of the supports. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear region, excellent selectivity and sensitivity to DA.  相似文献   

2.
Xiaoyu Cao 《Mikrochimica acta》2014,181(9-10):1133-1141
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe ssDNA on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. A thiol-tagged DNA strand coupled to horseradish peroxidase conjugated to AuNP served as a tracer. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. Hybridization with the target DNA was studied by measuring the electrochemical signal response of horseradish peroxidase using differential pulse voltammetry. The calibration plot is linear in the 5.0?×?10?14 and 5.0?×?10?9 M concentration range, and the limit of detection is 2.2?×?10?15 M. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA. The approach is deemed to provide a sensitive and reliable tool for highly specific detection of DNA.
Figure
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe (ssDNA) on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA  相似文献   

3.
The surface of a glassy carbon electrode (GCE) was modified by electropolymerization of acridine red followed by drop-coating of graphene. The morphology was characterized by scanning electron microscopy. Uric acid (UA) is effectively accumulated on the surface of the modified electrode and generates a sensitive anodic peak in solutions of pH 6.5. Differential pulse voltammetry was used to evaluate the electrochemical response of the modified GCE to UA. Compared to the bare GCE, the GCE modified with acridine red, and to the graphene modified electrode, the new GCE displays high electrochemical activity in giving an oxidation peak current that is proportional to the concentration of UA in the range from 0.8 to 150?μM, with a detection limit of 0.3?μM (at an S/N of 3). The modified electrode displays excellent selectivity, sensitivity, and a wide linear range. It has been applied to the determination of UA in real samples with satisfactory results.
Figure
The surface of a glassy carbon electrode was modified by electropolymerization of acridine red onto its surface and then covering it with graphene dropped. The graphene-poly(acridine red) modified electrode displays high electrochemical activity in giving an oxidation peak current that is proportional to the concentration of uric acid in a certain range.  相似文献   

4.
We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H2O2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoOxNPs or graphene sheets only, the new electrode displays larger oxidative current response to H2O2, probably due to the synergistic effects between the graphene sheets and the CoOxNPs. The sensor responds to H2O2 with a sensitivity of 148.6 μA mM?1 cm?2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H2O2 in hydrogen peroxide samples.
Figure
A highly sensitive H2O2 sensor using a glassy carbon electrode modified with cobalt oxide nanoparticles/electrochemical reduced graphene oxide (CoOxNPs/ERGO) hybrids is presented.  相似文献   

5.
We describe a modified glassy carbon electrode (GCE) for the sensitive determination of nitrite in waste water samples. The GCE was modified by electrodeposition of cobalt oxide nanoparticles on multi-walled carbon nanotubes (MWCNTs) deposited on a conventional GCE. Scanning electron microscopy and electrochemical techniques were used for the characterization of the composite material which is very uniform and forms a kind of nanoporous structure. Electrochemical experiments showed that the modified electrode exhibited excellent electrocatalytic properties for nitrite. Amperometry revealed a good linear relationship between peak current and nitrate concentration in the 0.5 to 250???M range with a detection limit of 0.3???M (S/N?=?3). The method has been applied to the amperometric detection of nitrite. The modified electrode displays good storage stability, reproducibility, and selectivity for a promising practical application.
Figure
The dense and entangled CoOx/MWCNTs nanocomposite showed a three-dimensional nanoporous structure. The three-dimensional nanoporous structure provided ample space to allow fast mass transport of ions through the electrolyte/electrode interface as well as a conductive network for enhancing electronic conductivity which was favorable to the catalytic application of CoOx.  相似文献   

6.
We describe a glassy carbon electrode (GCE) modified with a film composed of Nafion and TiO2-graphene (TiO2-GR) nanocomposite, and its voltammetric response to the amino acids L-tryptophane (Trp) and L-tyrosine (Tyr). The incorporation of TiO2 nanoparticles with graphene significantly improves the electrocatalytic activity and voltammetric response compared to electrodes modified with Nafion/graphene only. The Nafion/TiO2-GR modified electrode was used to determine Trp and Tyr with detection limits of 0.7 and 2.3 μM, and a sensitivity of 75.9 and 22.8 μA mM?1 for Trp and Tyr, respectively.
Figure
The electrochemical sensor based on Nafion/TiO2-GR composite film modified GCE was presented. The integration of TiO2 nanoparticles with graphene provides an efficient microenvironment to promote the electrochemical reaction of amino acids Trp and Tyr. The fabricated electrochemical sensor exhibits favorable analytical performance for Trp and Tyr, with high sensitivity, low detection limit and good reproducibility.  相似文献   

7.
We report on a sensitive electrochemical sensor for dopamine (DA) based on a glassy carbon electrode that was modified with a nanocomposite containing electrochemically reduced graphene oxide (RGO) and palladium nanoparticles (Pd-NPs). The composite was characterized by scanning electron microscopy, energy dispersive spectroscopy, and electrochemical impendence spectroscopy. The electrode can oxidize DA at lower potential (234 mV vs Ag/AgCl) than electrodes modified with RGO or Pd-NPs only. The response of the sensor to DA is linear in the 1–150 μM concentration range, and the detection limit is 0.233 μM. The sensor was applied to the determination of DA in commercial DA injection solutions.
Figure
Schematic representation showing the oxidation of DA at RGO-Pd-NPs composite electrode.  相似文献   

8.
Platinum nanoparticles were electrodeposited onto a film of dihexadecyl hydrogen phosphate deposited on a glassy carbon electrode (GCE) and modified with dispersed acetylene black. Scanning electron microscopy and electrochemical impedance spectroscopy revealed that this nanocomposite has a uniform nanostructure and a large surface area that enables fast electron-transfer kinetics. The modified GCE showed high electrocatalytic activity for the oxidation of nitric oxide (NO). Under optimal conditions, the oxidation peak current of nitric oxide is linearly related to the concentration of NO in the concentration range between 0.18 and 120?μM, and the detection limit is as low as 50?nM (at an S/N of 3). The modified electrode was successfully applied to sensing of NO as released from rat liver.
Figure
Acetylene black (AB) was dispersed with dihexadecyl hydrogen phosphate (DHP) and modified on the surface of glassy carbon electrode (GCE) to fabricate AB/GCE, after activating in NaOH solution, the AB film became more porous and loosened, then through electrodepositing Pt nanoparticles (PtNPs) on the activated AB film, PtNP/AB/GCE was obtained, which was denoted as NO electrochemical sensor.  相似文献   

9.
Qi Wang  Yanbin Yun 《Mikrochimica acta》2012,177(3-4):411-418
We have investigated the oxidative electrochemistry of nitrite on glassy carbon electrodes modified with cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) (PEDOT), and graphene. The modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The results suggest that this new type of electrode combines the advantages of PEDOT-graphene films and cobalt nanoparticles and exhibits excellent electrocatalytic activity towards the oxidation of nitrite. There is a linear relationship between the peak current and the nitrite concentration in the range from 0.5?μM to 240?μM, and the detection limit is 0.15?μM. The modified electrodes also enable the determination of nitrite at low potentials where the noise level and interferences by other electro-oxidizable compounds are weak.
Figure
The present work describes the design of a Co NPs-PEDOT-GE nanocomposite- modified GCE and its electrocatalytic properties toward the oxidation of nitrite. Compared with the Co NPs-GE/GCE (b) or PEDOT-GE/GCE (c), the as-prepared Co NPs-PEDOT-GE/GCE (d) exhibits remarkably enhanced electrocatalytic activity towards nitrite  相似文献   

10.
A DNA biosensor was constructed by immobilizing a 20-mer oligonucleotide probe and hybridizing it with its complementary oligomer on the surface of a glassy carbon electrode modified with gold nanoparticles. The properties of the biosensor and its capability of recognizing its complementary sequence were studied by electrochemical impedance spectroscopy. The oxidative stress caused by cadmium ions can be monitored by differential pulse voltammetry using the cobalt(III)tris(1,10-phenanthroline) complex and methylene blue as electrochemical indicators. The biosensor is capable of indicating damage caused by Cd(II) ions in pH 6.0 solution. The results showed that the biosensor can be used for rapid screening for DNA damage.
Figure
DPV of DNA biosensors before (a, c) and after hybridization (b, d) at 1.0 ×10?C7 mol·L-1target DNA concentration, (a) probe DNA/Au/GCE and (b) dsDNA/Au/GCE (c) probe DNA/GCE, (d) dsDNA/GCE  相似文献   

11.
We report on the construction of a label-free electrochemical immunosensor for detecting the core antigen of the hepatitis C virus (HCV core antigen). A glassy carbon electrode (GCE) was modified with a nanocomposite made from gold nanoparticles, zirconia nanoparticles and chitosan, and prepared by in situ reduction. The zirconia nanoparticles were first dispersed in chitosan solution, and then AuNPs were prepared in situ on the ZrO2-chitosan composite. In parallel, a nanocomposite was synthesized from AuNPs, silica nanoparticles and chitosan, and conjugated to a secondary antibody. The properties of the resulting nanocomposites were investigated by UV-visible photometry and transmission electron microscopy, and the stepwise assembly process was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. An sandwich type of immunosensor was developed which displays high sensitivity to the HCV core antigen in the concentration range between 2 and 512?ng?mL?1, with a detection limit of 0.17?ng?mL?1 (at S/N?=?3). This immunosensor provides an alternative approach towards the diagnosis of HCV.
Fig
A sandwich-type immunosensor was constructed for the detection of HCV core Ag. AuNPs/ZrO2-Chits nanocomposites were prepared by in situ reduction method. AuNPs/SiO2-Chits nanocomposite integrated with secondary antibody (Ab2) without labeled HRP. The immunosensor displayed high sensitivity to HCV core antigen with a detection limit of 0.17?ng?mL?1 (S/N?=?3).  相似文献   

12.
We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility.
Figure
A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion.  相似文献   

13.
We describe a supersandwich type of electrochemical DNA biosensor based on the use of a glassy carbon electrode (GCE) modified with reduced graphene oxide (rGO) sheets that are decorated with gold nanoparticles (Au NPs). Thiolated capture DNA (probe DNA) was covalently linked to the Au NPs on the surface of the modified GCE via formation of Au-S bonds. In presence of target DNA, its 3′ terminus hybridizes with capture probe and the 5′ terminus hybridizes with signal probe labeled with Methylene Blue (MB). On increasing the concentration of target DNA, hybridization between signal probe and target DNA results in the formation of three different DNA sequences that form a supersandwich structure. The signal intensity of MB improves distinctly with increasing concentrations of target DNA in the sample solution. The assembling process on the surface of the electrode was studied by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Differential pulse voltammetry (DPV) was used to monitor the hybridization event by measuring the changes in the peak current for MB. Under optimal conditions, the peak currents in DPV for MB linearly increase with the logarithm of target DNA concentration in the range from 0.1 μM to1.0 fM, with a detection limit of 0.35 fM (at an signal/noise ratio of 3). This biosensor exhibits good selectivity, even over single-base mismatched target DNA.
Figure
We designed a sensitive supersandwich electrochemical DNA biosensor based on rGO sheets decorated with Au NPs. SEM and electrochemical methods were employed to investigate the assembly process of the biosensor. The biosensor exhibits high sensitivity and good specificity.  相似文献   

14.
A differential pulse voltammetric method was developed for the simultaneous determination of paracetamol, 4-aminophenol and dopamine at pH 7.0 using a glassy carbon electrode (GCE) coated with gold nanoparticles (AuNPs) and a layered double hydroxide sodium modified with dodecyl sulfate (SDS-LDH). The modified electrode displays excellent redox activity towards paracetamol, and the redox current is increased (and the corresponding over-potential decreased) compared to those of the bare GCE, the AuNPs-modified GCE, and the SDS-LDH-modified GCE. The modified electrode enables the determination of paracetamol in the concentration range from 0.5 to 400???M, with a detection limit of 0.13???M (at an S/N of 3). The sensor was successfully applied to the stimultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively, in pharmaceutical tablets and in spiked human serum samples.
Figure
1. Gold nanoparticles and organophillic layered double hydroxide modified glassy carbon electrode was fabricated. 2. The modified electrode displayed excellent redox activity towards paracetamol. 3. This electrode was successfully applied to the simultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively  相似文献   

15.
We report on an electrochemical aptasensor for the ultrasensitive determination of thrombin. A glassy carbon electrode modified with a graphene-porphyrin nanocomposite exhibits excellent electrochemical activity and can be used as a redox probe in differential pulse voltammetry of the porphyrin on its surface. The thrombin aptamer is then immobilized via p-stacking interactions between aptamer and graphene and π-π stacking with porphyrin simultaneously. The resulting electrochemical aptasensor displays a linear response to thrombin in the 5–1,500 nM concentration range and with a limit of detection of 0.2 nM (at an S/N of 3). The sensor benefits from the synergetic effects of graphene (with its high conductivity and high surface area), of the porphyrin (possessing excellent electrochemical activity), and of the aptamer (with its high affinity and specificity). This kind of aptasensor conceivably represents a promising tool for bioanalytical applications.
Figure
The representation of the sensing procedure for analysis of thrombin based on the TA/GN-Por/GCE by an electrochemical strategy  相似文献   

16.
We have synthesized a virtually monodisperse gold-graphene (Au-G) nanocomposite by a single-step chemical reduction method in aqueous dimethylformamide solution. The nanoparticles are homogenously distributed over graphene nanosheets. A glassy carbon electrode was modified with this nanocomposite and displayed high electrocatalytic activity and extraordinary electronic transport properties due to its large surface area. It enabled the simultaneous determination of hydroquinone (HQ) and catechol (CC) in acetate buffer solution of pH?4.5. Two pairs of well-defined, quasi-reversible redox peaks are obtained, one for HQ and its oxidized form, with a 43 mV separation of peak potentials (ΔEp), the other for CC and its oxidized form, with a ΔEp of 39 mV. Due to the large separation of oxidation peak potentials (102 mV), the concentrations of HQ and CC can be easily determined simultaneously. The oxidation peak currents for both HQ and CC increase linearly with the respective concentrations in the 1.0 μM to 0.1 mM concentration range, with the detection limits of 0.2 and 0.15 μM (S/N?=?3), respectively. The modified electrode was successfully applied to the simultaneous determination of HQ and CC in spiked tap water, demonstrating that the Au-G nanocomposite may act as a high-performance sensing material in the selective detection of some environmental pollutants.
Figure
Au-graphene (Au-G) nanocomposites were synthesized through a single-step chemical reduction method. Nearly monodispersed Au nanoparticles were uniformly distributed over the 2D graphene nanosheets without aggregation. The glassy carbon electrode modified with Au-G nanocomposites, Au-G/GCE, shows high resolution capability in simultaneous determination of hydroquinone (HQ) and catechol (CC) in acetate buffer solutions (HAc-NaAc, pH 4.5).  相似文献   

17.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

18.
In the present work, we described the preparation of iron nanoparticles decorated graphene-multiwalled carbon nanotubes nanocomposite (GR-MWCNTs/FeNPs) modified glassy carbon electrode (GCE) and its application for the sensitive determination of nitrite. First, GR-MWCNTs/FeNPs nanocomposite has been prepared by a simple solution-based approach via chemical reduction and then it was characterized. Afterwards, GR-MWCNTs/FeNPs/GCE was prepared and employed for the electrocatalysis of nitrite. Electrocatalytic oxidation of nitrite at the GR-MWCNTs/FeNPs/GCE has been significantly improved in terms of both reduction in overpotential and increase in peak current. Therefore, the modified electrode was employed for amperometric determination of nitrite which exhibited excellent analytical parameters with wide linear range of 1?×?10?7 M to 1.68?×?10?3 M and very low detection limit of 75.6 (±1.3)?nM. The proposed sensor selectively detects nitrite even in the presence of high concentration of common ions and biological interferrants. Good recoveries achieved for the determination of nitrite in various water samples reveal the promising practicality of the sensor. In addition, the sensor displays an acceptable repeatability and reproducibility along with appreciable storage and excellent operational stabilities.
Figure
Schematic representation for the preparation of GR-MWCNTs/FeNPs nanocomposite and its electrocatalysis towards nitrite  相似文献   

19.
Functionalized gold nanoparticles capped with polyoxometalates were prepared by a simple photoreduction technique where phosphododecamolybdates serve as reducing reagents, photocatalysts, and as stabilizers. TEM images of the resulting gold nanoparticles show the particles to have a relative narrow size distribution. Monolayer and multilayer structures of the negatively charged capped gold nanoparticles were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide (ITO) electrode via the layer-by-layer technique. The surface plasmon resonance band of the gold nanoparticles displays a blue shift on the surface of the ITO electrode. This is due to the substrate-induced charge redistribution in the gold nanoparticles and a change in the electromagnetic coupling between the assembled nanoparticles. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate and excellent electrocatalytic activity. The catalysis of the modified electrode towards the model compound iodate was systematically studied. The heterogeneous catalytic rate constant for the electrochemical reduction of iodate was determined by chronoamperometry to be ca. 1.34?×?105 mol?1·L·s?1. The amperometric method gave a linear range from 2.5?×?10?6 to 1.5?×?10?3 M and a detection limit of 1.0?×?10?6 M. We believe that the functionalized gold nanoparticles prepared by this photoreduction technique are advantageous in terms of fabrication of sensitive and stable redox electrodes.
Figa
Functionalized gold nanoparticles (Au-NPs) capped with polyoxometalates were prepared by a simple photoreduction technique. The negatively charged capped Au-NPs were deposited on a poly(vinyl pyridine)-derivatized indium-doped tin oxide electrode via the layer-by-layer technique. The modified electrode exhibits the characteristic electrochemical behavior of surface-confined phosphododecamolybdate, and excellent catalytic activity.  相似文献   

20.
We have modified a glassy carbon electrode by single-step electrodeposition of graphene (GR), gold nanoparticles (AgNPs), and chitosan (CS) directly from a solution containing graphene oxide, tetrachloroauric acid, and chitosan. The surface and electrochemical properties of the film-modified electrode were investigated by SEM and TEM images. The AuNPs have a diameter of about 20 nm and are uniformly dispersed in the matrix. Combining the advantages of GR (i.e., high surface area and conductivity), of AuNPs (excellent electrical conductivity) and CS (excellent film-forming ability and good water permeability), the hybrid film effectively enhances electron-transfer and promotes the response to lead(II) ion. Under the optimum conditions, a linear relationship exists between electrical current and the concentration of lead (II) ion in the range between 0.5 to 100 μg?L-1, with a detection limit of 1 ng?L-1 (at an SNR of 3). The electrode was successfully applied to the detection of lead(II) in spiked samples of river water.
Figure
Graphene–Au nanoparticles–chitosan (GR–AuNPs–CS) was fabricated by one-step electrodeposition. The obtained GR–AuNPs–CS hybrid was used for trace analysis of the lead (II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号