首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We show that, for each finite group G, there exists an axiomatization of the class of abelian-by-G groups with a single sentence. In the proof, we use the definability of the subgroups M n in an abelian-by-finite group M, and the Auslander-Reiten sequences for modules over an Artin algebra. Received: 15 March 1996 / Published online: 18 July 2001  相似文献   

2.
Every module over an Iwanaga–Gorenstein ring has a Gorenstein flat cover [13] (however, only a few nontrivial examples are known). Integral group rings over polycyclic-by-finite groups are Iwanaga–Gorenstein [10] and so their modules have such covers. In particular, modules over integral group rings of finite groups have these covers. In this article we initiate a study of these covers over these group rings. To do so we study the so-called Gorenstein cotorsion modules, i.e. the modules that split under Gorenstein flat modules. When the ring is ℤ, these are just the usual cotorsion modules. Harrison [16] gave a complete characterization of torsion free cotorsion ℤ-modules. We show that with appropriate modifications Harrison's results carry over to integral group rings ℤG when G is finite. So we classify the Gorenstein cotorsion modules which are also Gorenstein flat over these ℤG. Using these results we classify modules that can be the kernels of Gorenstein flat covers of integral group rings of finite groups. In so doing we necessarily give examples of such covers. We use the tools we develop to associate an integer invariant n with every finite group G and prime p. We show 1≤n≤|G : P| where P is a Sylow p-subgroup of G and gives some indication of the significance of this invariant. We also use the results of the paper to describe the co-Galois groups associated to the Gorenstein flat cover of a ℤG-module. Presented by A. Verschoren Mathematics Subject Classifications (2000) 20C05, 16E65.  相似文献   

3.
In the theory of infinite groups, one of the most important useful generalizations of the classical Maschke theorem is the Kovačs-Newman theorem, which establishes sufficient conditions for the existence of G-invariant complements in modules over a periodic group G finite over the center. We genralize the Kovačs-Newman theorem to the case of modules over a group ring KG, where K is a Dedekind domain. Dnepropetrovsk University, Dnepropetrovsk. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 2, pp. 255–261, February, 1997.  相似文献   

4.
Extending the notion of von Neumann regular elements in a ring R, a homomorphism f:AM between R-modules is said to be regular if there exists some g:M → A such that fgf = f. In this paper we report about the use of this term in module theory.   相似文献   

5.
A group is said to be p-rigid, where p is a natural number, if it has a normal series of the form G = G 1 > G 2 > … > G p  > G p+1 = 1, whose quotients G i /G i+1 are Abelian and are torsion free when treated as \mathbbZ \mathbb{Z} [G/G i ]-modules. Examples of rigid groups are free soluble groups. We point out a recursive system of universal axioms distinguishing p-rigid groups in the class of p-soluble groups. It is proved that if F is a free p-soluble group, G is an arbitrary p-rigid group, and W is an iterated wreath product of p infinite cyclic groups, then ∀-theories for these groups satisfy the inclusions A(F) ê A(G) ê A(W) \mathcal{A}(F) \supseteq \mathcal{A}(G) \supseteq \mathcal{A}(W) . We construct an ∃-axiom distinguishing among p-rigid groups those that are universally equivalent to W. An arbitrary p-rigid group embeds in a divisible decomposed p-rigid group M = M1,…, α p ). The latter group factors into a semidirect product of Abelian groups A 1 A 2A p , in which case every quotient M i /M i+1 of its rigid series is isomorphic to A i and is a divisible module of rank αi over a ring \mathbbZ \mathbb{Z} [M/M i ]. We specify a recursive system of axioms distinguishing among M-groups those that are Muniversally equivalent to M. As a consequence, it is stated that the universal theory of M with constants in M is decidable. By contrast, the universal theory of W with constants is undecidable.  相似文献   

6.
Let G = GL N or SL N as reductive linear algebraic group over a field k of characteristic p > 0. We prove several results that were previously established only when N ⩽ 5 or p > 2  N : Let G act rationally on a finitely generated commutative k-algebra A and let grA be the Grosshans graded ring. We show that the cohomology algebra H *(G, grA) is finitely generated over k. If moreover A has a good filtration and M is a Noetherian A-module with compatible G action, then M has finite good filtration dimension and the H i (G, M) are Noetherian A G -modules. To obtain results in this generality, we employ functorial resolution of the ideal of the diagonal in a product of Grassmannians.  相似文献   

7.
Let G be a finite group and cd(G) be the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd(G) = cd(H), then G ≅ H×A, where A is an abelian group. In this paper, we verify the conjecture for the twisted Ree groups 2 G 2(q 2) for q 2 = 32m + 1, m ≥ 1. The argument involves verifying five steps outlined by Huppert in his arguments establishing his conjecture for many of the nonabelian simple groups.  相似文献   

8.
A group G is said to be rigid if it contains a normal series of the form G = G 1 > G 2 > … > G m  > G m + 1 = 1, whose quotients G i /G i + 1 are Abelian and are torsion free as right Z[G/G i ]-modules. In studying properties of such groups, it was shown, in particular, that the above series is defined by the group uniquely. It is known that finitely generated rigid groups are equationally Noetherian: i.e., for any n, every system of equations in x 1, …, x n over a given group is equivalent to some of its finite subsystems. This fact is equivalent to the Zariski topology being Noetherian on G n , which allowed the dimension theory in algebraic geometry over finitely generated rigid groups to have been constructed. It is proved that every rigid group is equationally Noetherian. Supported by RFBR (project No. 09-01-00099) and by the Russian Ministry of Education through the Analytical Departmental Target Program (ADTP) “Development of Scientific Potential of the Higher School of Learning” (project No. 2.1.1.419). Translated from Algebra i Logika, Vol. 48, No. 2, pp. 258–279, March–April, 2009.  相似文献   

9.
Torsion-free Abelian groups G and H are called quasi-equal (GH) if λGHG for a certain natural number ≈. It is known (see [3]) that the quasi-equality of torsion-free Abelian groups can be represented as the equality in an appropriate factor category. Thus while dealing with certain group properties it is usual to prove that the property under consideration is preserved under the transition to a quasi-equal group. This trick is especially frequently used when the author investigates module properties of Abelian groups; here a group is considered as a left module over its endomorphism ring. On the other hand, a topical problem in the Abelian group theory is the problem of investigation of pureness in the category of Abelian groups (see [4]). We consider the pureness introduced by P. Cohn [2] for Abelian groups as modules over their endomorphism rings. Particularity of the investigation of the properties of pureness for the Abelian group G as the module E (G)G lies in the fact that this is a more general situation than the investigation of pureness for a unitary module over an arbitrary ring R with the identity element. Indeed, if R M is an arbitrary unitary left module and M + is its Abelian group, then each element from R can be identified with an appropriate endomorphism from the ring E(M +) under the canonical ring homomorphism RE(M +). Then it holds that if E(M+) N is a pure submodule in E(M+) M +, then R N is a pure submodule in R M. In the present paper the interrelations between pureness, servantness, and quasi-decompositions for Abelian torsion-free groups of finite rank will be investigated. __________ Translated from Fundamentalnaya i Prikladnaya Matematika (Fundamental and Applied Mathematics), Vol. 10, No. 2, pp. 225–238, 2004.  相似文献   

10.
We study finite set-theoretic solutions (X,r) of the Yang-Baxter equation of square-free multipermutation type. We show that each such solution over ℂ with multipermutation level two can be put in diagonal form with the associated Yang-Baxter algebra A(\mathbbC,X,r)\mathcal{A}(\mathbb{C},X,r) having a q-commutation form of relations determined by complex phase factors. These complex factors are roots of unity and all roots of a prescribed form appear as determined by the representation theory of the finite abelian group G\mathcal{G} of left actions on X. We study the structure of A(\mathbbC,X,r)\mathcal{A}(\mathbb{C},X,r) and show that they have a ∙-product form ‘quantizing’ the commutative algebra of polynomials in |X| variables. We obtain the ∙-product both as a Drinfeld cotwist for a certain canonical 2-cocycle and as a braided-opposite product for a certain crossed G\mathcal{G}-module (over any field k). We provide first steps in the noncommutative differential geometry of A(k,X,r)\mathcal{A}(k,X,r) arising from these results. As a byproduct of our work we find that every such level 2 solution (X,r) factorises as r = f ∘ τ ∘ f  − 1 where τ is the flip map and (X,f) is another solution coming from X as a crossed G\mathcal{G}-set.  相似文献   

11.
In earlier papers finite pseudorandom binary sequences were studied, quantitative measures of pseudorandomness of them were introduced and studied, and large families of “good” pseudorandom sequences were constructed. In certain applications (cryptography) it is not enough to know that a family of “good” pseudorandom binary sequences is large, it is a more important property if it has a “rich”, “complex” structure. Correspondingly, the notion of “f-complexity” of a family of binary sequences is introduced. It is shown that the family of “good” pseudorandom binary sequences constructed earlier is also of high f-complexity. Finally, the cardinality of the smallest family achieving a prescibed f-complexity and multiplicity is estimated. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Consider the action of a finite group G on a set M. Then the Galois number is defined to be 1 + f, where fis the maximal number of fixed points of an element in G, which does not act as the identity on M. We determine the Galois number and the minimal degree of all doubly transitive permutation groups.  相似文献   

13.
A triangular matrix ring Λ is defined by a triplet (R,S,M) where R and S are rings and R M S is an S-R-bimodule. In the main theorem of this paper we show that if T S is a tilting S-module, then under certain homological conditions on the S-module M S , one can extend T S to a tilting complex over Λ inducing a derived equivalence between Λ and another triangular matrix ring specified by (S′, R, M′), where the ring S′ and the R-S′-bimodule M′ depend only on M and T S , and S′ is derived equivalent to S. Note that no conditions on the ring R are needed. These conditions are satisfied when S is an Artin algebra of finite global dimension and M S is finitely generated. In this case, (S′,R,M′) = (S, R, DM) where D is the duality on the category of finitely generated S-modules. They are also satisfied when S is arbitrary, M S has a finite projective resolution and Ext S n (M S , S) = 0 for all n > 0. In this case, (S′,R,M′) = (S, R, Hom S (M, S)).  相似文献   

14.
Let G denote a finite group and cd (G) the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd (G) = cd (H), then G ≅ H × A, where A is an abelian group. Huppert verified the conjecture for PSp4(q) when q = 3, 4, 5, or 7. In this paper, we extend Huppert’s results and verify the conjecture for PSp4(q) for all q. This demonstrates progress toward the goal of verifying the conjecture for all nonabelian simple groups of Lie type of rank two.  相似文献   

15.
Let G be a reductive algebraic group and X a smooth G-variety. For a smooth locally closed G-stable subvariety MX, we prove that the G-complexity of the (co)normal bundle of M is equal to the G-complexity of X. In particular, if X is spherical, then all (co)normal bundles are again spherical G-varieties. If X is a G-module with finitely many orbits, the closures of the conormal bundles of the orbits coincide with the irreducible components of the commuting variety. We describe properties of these closures for the representations associated with short gradings of simple Lie algebras. Received: 22 April 1998  相似文献   

16.
This paper is devoted to the study of locally finite modules M, i.e., modules whose finitely generated submodules are finite (as sets). In particular, we study rings which have faithful locally finite modules, for example, the polynomial rings ℤ[x] and F[x], where F is a finite field. Our results generalize the properties of Abelian torsion groups and the ring of integers. __________ Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 14, Algebra, 2004.  相似文献   

17.
We construct a family of Σ-uniform Abelian groups and a family of Σ-uniform rings. Conditions are specified that are necessary and sufficient for a universal Σ-function to exist in a hereditarily finite admissible set over structures in these families. It is proved that there is a set S of primes such that no universal Σ-function exists in hereditarily finite admissible sets \mathbbH\mathbbF(G) \mathbb{H}\mathbb{F}(G) and \mathbbH\mathbbF(K) \mathbb{H}\mathbb{F}(K) , where G = ⊕{Z p | pS} is a group, Z p is a cyclic group of order p, K = ⊕{F p | pS} is a ring, and F p is a prime field of characteristic p.  相似文献   

18.
We prove that every separable algebra over an infinite field F admits a presentation with 2 generators and finitely many relations. In particular, this is true for finite direct sums of matrix algebras over F and for group algebras FG, where G is a finite group such that the order of G is invertible in F. We illustrate the usefulness of such presentations by using them to find a polynomial criterion to decide when 2 ordered pairs of 2 × 2 matrices (A, B) and (A′, B′) with entries in a commutative ring R are automorphically conjugate over the matrix algebra M 2(R), under an additional assumption that both pairs generate M 2(R) as an R-algebra.  相似文献   

19.
We define lacunary Fourier series on a compact connected semisimple Lie group G. If f ∈ L 1(G) has lacunary Fourier series and f vanishes on a non empty open subset of G, then we prove that f vanishes identically. This result can be viewed as a qualitative uncertainty principle.  相似文献   

20.
We introduce the notion of categorical cliquish mapping and show that, for each K h C-mapping f: X × Y → Z, where X is a topological space, Y is a space with the first axiom of countability, and Z is a Moore space, with categorical-cliquish horizontal y-sections f y , the sets C y (f) are residual G δ-type sets in X for every y  Y. Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 11, pp. 1539–1547, November, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号