首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid State Ionics》2004,166(1-2):191-197
Cathodic and anodic overpotentials were measured using current interruption and AC impedance spectroscopy for two separate solid oxide fuel cells (SOFCs). The fuel cells used yttria-stabilized zirconia (YSZ) as the electrolyte, strontium-doped lanthanum manganite (LSM) as the cathode, and a porous YSZ layer impregnated with copper and ceria as the anode. The Cu/CeO2/YSZ anode is active for the direct conversion of hydrocarbon fuels. Overpotentials measured using both current interruption and impedance spectroscopy for the fuel cell operating at 700 °C on both hydrogen and n-butane fuels are reported. In addition to providing the first electrode overpotential measurements for direct conversion fuel cells with Cu-based anodes, the results demonstrate that there may be significant uncertainties in measurements of electrode overpotentials for systems where there is a large difference between the characteristic frequencies of the anode and cathode processes and/or complex electrode kinetics.  相似文献   

2.
《Solid State Ionics》2006,177(19-25):2071-2074
(La, Sr)MnO3 (LSM)–Y doped ZrO2 (YSZ) composite was prepared using YSZ colloidal suspension (initial YSZ particle size ∼100 nm), YSZ and LSM polymer precursors on dense substrates at 800 °C annealing temperature. The results of a symmetrical LSM–YSZ composite cell test showed the area specific resistance for overpotential of 0.14 Ω cm2 at 800 °C, which indicated that the LSM–YSZ composite could be a potential candidate for cathode in SOFCs. The performance of the cell with the LSM–YSZ composite cathode and Ni-YSZ anode was investigated and the power density of about 0.26 W cm 2 was obtained at 850 °C using hydrogen fuel.  相似文献   

3.
A composite material (hereafter referred to as NYC) containing Ni, Y2O3-stabilized ZrO2 (YSZ) and Ce0.9Ca0.1O2−δ (CC10) particles was prepared and used as the anode of solid oxide fuel cells (SOFCs). The performance of NYC was better than that of conventional Ni/YSZ anodes in terms of anodic overpotential and interface impedance. The additional CC10 particles improved the anode properties. XRD results suggest that a solid solution of YSZ and CC10 was produced. From impedance measurements, it is concluded that the solid solution exhibits substantial electronic conduction. Ni/YSZ/15 wt% Ce0.9Ca0.1O2−δ anodes exhibited the best properties over the experimental temperature range. A SOFC with an anode of Ni/YSZ/15 wt% Ce0.9Ca0.1O2−δ provided the maximum power density and current density. Addition of CC10 with an average particle size of 0.3 μm was more advantageous than that with an average size of 3 μm.  相似文献   

4.
《Solid State Ionics》2006,177(3-4):281-287
Screen-printing technology was developed to fabricate dense YSZ electrolyte films onto NiO–YSZ porous anode substrates. A single fuel cell of Ni-YSZ/YSZ (31 μm)/LSM-YSZ was successfully prepared by screen-printing technology. Using humidified hydrogen as fuel and ambient air as oxidant, the fuel cell provided the maximum power densities of 0.18, 0.33, 0.58, 0.97 and 1.3 W/cm2 at 650, 700, 750, 800 and 850 °C, respectively. The properties of the starting YSZ powder exerted a significant effect on the characteristics of the screen-printed YSZ electrolyte films. The aggregates of the powder could be partially broken by ball milling. The YSZ powder with a small particle size and a narrow particle size distribution helped to obtain dense YSZ films. The films prepared from the YSZ powder with high aggregates were very porous, which resulted in a low open circuit voltage, a high ohmic resistance, a high polarization resistance and thus a poor cell performance.  相似文献   

5.
The strontium and ruthenium doped lanthanum chromite was synthesized by the Pyrosol technique. This method has allowed to insert ruthenium in the perovskite powder. The catalytic behavior for the methane reforming was determined using a catalytic bench. In the presence of a few percent of water vapor, this material transforms the methane into hydrogen without generating carbon deposition. The electrochemical behavior of this material as anode has been studied by impedance spectroscopy under Ar/H2O, H2/H2O and CH4/H2O mixtures. The overpotential resistance values are of the same order of magnitude under hydrogen and under methane. An additional contribution at low frequencies is observed under argon, resulting probably of the electrode polarization. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

6.
《Solid State Ionics》2006,177(19-25):2065-2069
Novel Ni–Al2O3 cermet-supported tubular SOFC cell was fabricated by thermal spraying. Flame-sprayed Al2O3–Ni cermet coating played dual roles of a support tube and an anode current collector. Y2O3-stabilized ZrO2 (YSZ) electrolyte was deposited by atmospheric plasma spraying (APS) to aim at reducing manufacturing cost. The gas tightness of APS YSZ coating was achieved by post-densification process. The influence of YSZ coating thickness on the performance of SOFC test cell was investigated in order to optimize YSZ thickness in terms of open circuit voltage of the cell and YSZ ohmic loss. It was found that the reduction of YSZ thickness from 100 μm to 40 μm led to the increase of the maximum output power density from 0.47 W/cm2 to 0.76 W/cm2 at 1000 °C. Using an APS 4.5YSZ coating of about 40 μm as the electrolyte, the test cell presented a maximum power output density of over 0.88 W/cm2 at 1030 °C. The results indicate that SOFCs with thin YSZ electrolyte require more effective cathode and anode to improve performance.  相似文献   

7.
《Solid State Ionics》2006,177(5-6):541-547
This work investigated the effect of oxide in Ni-zirconia cermets on the carbon deposition behavior in internal reforming SOFCs. Within 800–1000 °C, carbon deposition was found to decrease with increasing temperature on Ni/ScSZ cermet anodes at a low oxygen / carbon ratio (O / C = 0.03) during anodic oxidation of methane. On the contrary, an opposite trend was observed on Ni/YSZ under the same conditions, consisting with the temperature dependence of carbon deposition predicted by a thermodynamic equilibrium calculation. Results of temperature-programmed-reduction (TPR) of NiO mixed with YSZ or ScSZ indicated that interaction of Ni with ScSZ is stronger than that with YSZ. The stronger interaction was corroborated by observed tendency of inhibiting Ni agglomeration by both BET specific surface area analysis and SEM observation. It was also found that the dependence of CO2 production rate monitored by GC on current density showed a similar dependence trend of the equilibrium CO2 content on O / C ratio. A model in which H2Oad enrichment effects on Ni surface by anodic current depend on the interaction between Ni and the oxide in Ni cermet was proposed to explain the different carbon deposition behaviors between Ni/YSZ and Ni/ScSZ cermets.  相似文献   

8.
NiO/Y2O3-stabilized ZrO2 (YSZ)/Y-doped BaZrO3 (BZY) triple-phase composite powders were prepared by spray pyrolysis and evaluated for Ni/YSZ/BZY cermet anodes, which are considered effective for dry CH4 operation in solid oxide fuel cells. The structure of the particles in these powders was fine crystal fragments, and the individual material phases were clearly separated and highly dispersed within the particles. The Ni/YSZ/BZY cermet anodes fabricated with these composite powders maintained a fine electrode microstructure equivalent to that in a simple Ni/YSZ cermet anode manufactured using a composite powder prepared by spray pyrolysis. Furthermore, the addition of BZY improved the anode performance in humidified H2 and dry CH4 operation.  相似文献   

9.
The objective of the present work is the development of a “built-in” potential electrode method for direct measurements of the cathode and anode overpotentials and the corresponding interface resistances of solid oxide fuel cells (SOFC). The studies were performed on a yttria-stabilised zirconia (YSZ) electrolyte-supported SOFC using La0.8Sr0.2MnO3 as cathode, GDC as protecting layer and Ni-ScSZ cermet as anode. The mesh potential electrode was placed inside the YSZ membrane near the cathode side. Using the combination of the I-U and the impedance measurements with the built-in potential electrode technique, the temperature dependencies of the electrodes and electrolyte contributions to the total cell resistance were determined.  相似文献   

10.
Four different Ni/YSZ cermets were prepared by combining two sets of NiO and YSZ powders of different size. The microstructural change evolved during the course of electrode adhesion and cell operation was monitored using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The anodic activity was compared by analyzing the ∝ impedance spectra of four Ni/YSZ cermet (H2) / YSZ half cells at 1000 °C. Among the cermets, the one that prepared from the smaller NiO and larger YSZ powder showed the best anodic performances on aspects of the initial activity and long-term stability. This favorable performance is partly responsible to the presence of larger YSZ particles which provide a supporting matrix to suppress the microstructural change against Ni sintering and concomitant volume shrinkage, and partly to an easy formation of Ni channel for electronic conduction. Anodic performances of the other cermets were also discussed based on their microstructure.  相似文献   

11.
《Solid State Ionics》2006,177(11-12):979-988
Electrode polarization and conductivity measurements were carried out at the Pd/YSZ interface and at conditions close to the Pd–PdO thermodynamic equilibrium. The steady-state current–overpotential characteristics were analyzed with a Butler–Volmer type of equation. Both, apparent exchange current density, Io, and anodic/cathodic charge transfer coefficients (αa/αc), were calculated. Based on the experimental results, it was concluded that the charge transfer at the electrode is rate-determining in the case of PdO during anodic operation and Pd during cathodic operation, while in the other case mass transport of adsorbed oxygen species along the electrode/solid electrolyte interface is in competition with the charge transfer process.  相似文献   

12.
《Solid State Ionics》2006,177(1-2):149-157
The synthesis and performance of (La0.75Sr0.25)(Cr0.5Mn0.5)O3/Y2O3–ZrO2 (LSCM/YSZ) composites are investigated as alternative anodes for the direct utilization of methane (i.e., natural gas) in solid oxide fuel cells. Addition of YSZ phase greatly improves the adhesion and reduces the electrode polarization resistance of the LSCM/YSZ composite anodes. LSCM/YSZ composite anodes show reasonably good performance for the methane oxidation reaction in wet CH4 and the best electrode performance was achieved for the composite with LSCM contents of 50–60 wt.% with polarization resistances of 2–3 Ω cm2 in 97% CH4/3% H2O at 850 °C. The electrode impedance for the methane oxidation in wet CH4 on the LSCM/YSZ composite anodes was characterized by three separable arcs and the electrode behavior could be explained based on the ALS model for the reaction on the MIEC electrode. The results indicate that electrocatalytic activity of the LSCM/YSZ composite anodes for the methane oxidation is likely limited by the oxygen vacancy diffusion in the substituted lanthanum chromite-based materials.  相似文献   

13.
Porous Ni-YSZ (YSZ—yttria-stabilized zirconia) films were fabricated by reactive co-sputtering of a Ni and a Zr-Y target, followed by sequentially annealing in air at 900 °C and in vacuum at 800 °C. The Ni-YSZ films comprised small grains and pores that were tens of nanometers in size. The porous Ni-YSZ films were used as an anode on one side of a YSZ electrolyte disc and a La0.7Sr0.3MnO3 thick film was used as a cathode on the other side of the disc to form solid oxide fuel cells (SOFCs). The voltage-current curves of the SOFCs with single- and a triple-layered porous anodes were measured in a single-chamber configuration, in a mixture of CH4 and air (CH4:O2 volume ratio=2:1). The maximum power density of the SOFC using the single-layered porous Ni-YSZ thin films as the anode was 0.38 mW cm−2, which was lower than that of 0.76 mW cm−2, obtained using a screen-printed Ni-YSZ thick anode. The maximum power density of the SOFC with a thin anode was increased, but varied between 0.6 and 1.14 mW cm−2 when a triple-layered porous Ni-YSZ anode was used.  相似文献   

14.
The present work aims to explore the activity of Cu/CeO2 composites as anodic electrodes in direct iso-octane SOFCs. When the cell was operated as a membrane reactor, the effect of temperature, Pi-C8H18 and applied anodic overpotentials on the electrocatalytic activity and products' distribution, at both open and closed circuit conditions, was examined. Additionally, in situ DRIFT spectroscopy was carried out in order to correlate the performance of Cu/CeO2 with its surface chemistry during iso-octane decomposition. Under the “fuel cell” mode of operation, the electrochemical performance and stability of Cu/CeO2 were investigated by voltage-current density-power density and AC impedance measurements. The results reveal that at high anodic polarization conditions, carbon formation can be noticeably restricted (verified also by EDAX analysis), while H2 production was enhanced due to partial oxidation, steam reforming, dehydrogenation and water gas shift reactions. Achieved power densities were found to substantially increase both with temperature and Pi-C8H18, while minor performance degradation was indicated in the step-change tests, where the overall activity of Cu-CeO2 electrodes remained essentially unaffected.  相似文献   

15.
《Solid State Ionics》2006,177(15-16):1361-1369
The mechanism of the activation process for the O2 reduction on (La0.8Sr0.2)0.9MnO3 (LSM) electrodes is investigated by examining the electrochemical behavior of LSM under cathodic and anodic polarization conditions and the relaxation behavior of LSM under open circuit. A comparative study is also performed on a LSM electrode after dilute acid etching treatment. It has been shown that the segregated SrO has a significant inhibiting effect on the surface exchange process such as dissociative adsorption, incorporation and diffusion of oxygen species on the LSM surface, resulting in the initially very high impedance for the O2 reduction on LSM electrodes. A mechanism involving the incorporation of SrO into LSM lattice with the concomitant removal of cation vacancies is proposed for the activation effect of cathodic current passage/polarization in solid oxide fuel cells.  相似文献   

16.
《Solid State Ionics》2006,177(37-38):3323-3331
A performance of an anode-supported tubular Ni–8YSZ/Ni–ScSZ/ScSZ/GDC/LSC cell was investigated at 650–750 °C by feeding model kerosene reformate gas (H2, H2O, CO, CO2, and CH4) to a Ni–8YSZ/Ni–ScSZ anode. Variations of gas composition were observed not only between inlet and outlet of anode to estimate the degree of internal reforming, but also during current input by online quadrupole mass spectrometry and Fourier-transform infrared spectrometry.The electrochemical performance of the cell was independent of reforming temperature of kerosene, i.e. gas composition (in particular CH4 concentration) at moderate anode gas flow rates. At open-circuit states, 10% or less methane in the kerosene-reformed gas was readily converted by steam or CO2 over the Ni–8YSZ/Ni–ScSZ electrode so that gas compositions could almost follow the thermodynamic equilibrium at 650–750 °C. This suggests that the internal reforming should proceed almost completely over the Ni anode. Consumption of H2 and CO and production of CO2 were observed during current input. I–V characteristics remained constant at 650 °C as long as anodic W/F was more than 0.2 kg mmol 1 s. It was demonstrated that a catalytic activity of an anode electrode for hydrocarbons will be important for SOFCs with liquid fuels such as kerosene in order not to deteriorate cell performance.  相似文献   

17.
《Solid State Ionics》2006,177(19-25):1941-1948
The present paper reviews anodic reaction mechanisms of porous cermet and model anodes at metal/oxide interfaces in solid oxide fuel cells (SOFCs). Some analytical results, electrochemical methods, and reaction models were presented at Ni–YSZ cermets and well defined model anodes. Isotope labeling/secondary ion mass spectrometry (SIMS) analysis techniques were applied to determine the oxygen surface reactivity of oxide electrolytes in reducing atmospheres. The technique was also applied to determine the catalytic activity of metal/oxide interfaces for CH4 decomposition and reactivity with the reformed gases at the mesh or stripe shaped anodes on different oxides. Observed SIMS images and the electrochemical analyses were compared at the model anode/electrolyte interfaces.  相似文献   

18.
Oxygen permeation measurements were carried out on La0.8Sr0.2Ga0.75Mg0.15Co0.10O3±δ specimens of different thickness at temperatures between 673 and 1173 K under various gradients of oxygen partial pressure. Simultaneously, the open circuit cell voltage was measured. It was shown that the investigated compositions were characterized by a high oxygen permeation rate, and, consequently, by a high electronic conductivity. The electrode polarization effect was experimentally proved, and the influence of the measurement conditions on the degree of the electrode polarization effect was studied and discussed in detail. In particular, this mentioned influence was found to be sufficiently smaller at higher oxygen partial pressures in the cathode (oxygen-rich) compartment, while the change of pO2 on the anode (oxygen-lean) side of the permeation cell did not lead to any sufficient electrode polarization. The values of the hole conductivity calculated from the experimental results found to be at least influenced by electrode polarization were used for calculations of the hole conductivity. The comparison of these values with results obtained by other experimental techniques (by pO2-dependence of the total conductivity measured using impedance spectroscopy and Hebb–Wagner-polarization technique) demonstrated a satisfactory agreement.  相似文献   

19.
《Current Applied Physics》2014,14(5):702-707
The time domain transients of batteries comprised of LiFePO4 cathode material exhibit large nonlinearity with the increasing discharging rates. Hence, the calculated overpotential transients match the experimental determined well only when the discharging current is low enough. The results of electrochemical impedance spectra at different OCV level indicate that the change of the parameters of equivalent circuit or even the circuit architecture are probably responsible for the large discrepancy between the predicted and the measured transient profiles. By taking the change of equivalent circuit model at high discharging current into consideration, we successfully simulate the time domain transients of polarization within the entire discharging current range. Also with the help of circuit analysis, the contribution of the ohmic resistance, charge transfer impedance and solid-state diffusion impedance to total polarization has been differentiated as a function of discharging time.  相似文献   

20.
《Solid State Ionics》2006,177(19-25):1997-2003
A new family of perovskite titanates with formula La4Sr8Ti12−xMnxO38−δ has been investigated as fuel electrode materials for SOFCs. These phases present a rhombohedral (R 3c) unit cell. Mn substitution does not have a large impact on the bulk conductivity of the phases studied, which remains close to the values observed in other related titanates, although the grain boundary contributions are largely improved. Relatively low polarisation resistances were observed under both hydrogen and methane conditions, e.g., 0.3 and 0.7 Ω cm2 at 950 °C, respectively. Despite the polarisation resistance in methane being more than twice that in hydrogen, the performances are very similar, which might indicate certain methane activation at that temperature. Surprisingly, the anodic overpotential was fairly low compared to those reported in the literature for other materials and especially for titanate-based anodes, i.e., a value of 55 mV at 0.5A/cm2, at 950 °C, under wet hydrogen was obtained. Additionally, a value 72 mV was obtained in the same conditions under methane. These values indicate that the use of Mn as dopant for perovskite-related titanates enhanced electrochemical performance of these anodes, especially at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号