首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present case, the conjugate heat transfer involving a turbulent plane offset jet is considered. The bottom wall of the solid block is maintained at an isothermal temperature higher than the jet inlet temperature. The parameters considered are the offset ratio (OR), the conductivity ratio (K), the solid slab thickness (S) and the Prandtl number (Pr). The Reynolds number considered is 15,000 because the flow becomes fully turbulent and then it becomes independent of the Reynolds number. The ranges of parameters considered are: OR = 3, 7 and 11, K = 1–1,000, S = 1–10 and Pr = 0.01–100. High Reynolds number two-equation model (k–ε) has been used for turbulence modeling. Results for the solid–fluid interface temperature, local Nusselt number, local heat flux, average Nusselt number and average heat transfer have been presented and discussed.  相似文献   

2.
 Impinging jet combusting flows on granite plates are studied. A mathematical model for calculating heat release in turbulent impinging premixed flames is developed. The combustion including radiative heat transfer and local extinction effects, and flow characteristics are modeled using a finite volume computational approach. Two different eddy viscosity turbulence models, namely the standard k–ɛ and the RNG k–ɛ model with and without radiation (discrete transfer model) are assessed. The heat released predictions are compared with experimental data and the agreement is satisfactory only when both radiative heat transfer and local extinction modeling are taken into account. The results indicate that the main effect of radiation is the decrease of temperature values near the jet stagnation point and along the plate surface. Radiation increases temperature gradients and affects predicted turbulence levels independently of the closure model used. Also, the RNG k–ɛ predicts higher temperatures close the solid plate, with and without radiative heat transfer. Received on 13 November 2000 / Published online: 29 November 2001  相似文献   

3.
 The mean velocity field of a 30° inclined wall jet has been investigated using both hot-wire and laser Doppler anemometry (LDA). Provided that the nozzle aspect ratio is greater than 30 and the inclined wall angle (β) is less than 50°, LDA measurements for various β show that the reattachment length is independent of the nozzle aspect ratio and the nozzle exit Reynolds number (in the range 6670–13,340). There is general agreement between the reattachment lengths determined by LDA and those determined using wall surface oil film visualisation technique. The role of coherent structures arising from initial instabilities of a 30° wall jet has been explored by hot-wire spectra measurements. Results indicate that the fundamental vortex roll-up frequency in both the inner and outer shear layer corresponds to a Strouhal number (based on nozzle exit momentum thickness and velocity) of 0.012. The spatial development of instabilities in the jet has been studied by introducing acoustic excitation at a frequency corresponding to the shear layer mode. The formation of the fundamental and its first subharmonic has been identified in the outer shear layer. However, the development of the first subharmonic in the inner shear layer has been severely suppressed. Distributions of mean velocities, turbulence intensities and Reynolds shear stress indicate that controlled acoustic excitation enhances the development of instabilities and promotes jet reattachment to the wall, resulting in a substantially reduced recirculation flow region. Received: 24 November 1998/Accepted: 24 August 1999  相似文献   

4.
The performances of three linear eddy viscosity models (LEVM) and one algebraic Reynolds stress model (ARSM) for the simulation of turbulent flow inside and outside pressure-swirl atomizer are evaluated by comparing the interface position with available experimental data and by comparing the turbulence intensity profiles at the atomizer exit. It is found that the turbulence models investigated exhibit zonal behaviors, i.e. none of the models investigated performs well throughout the entire flow field. The turbulence intensity has a significant influence on the global characteristics of the flow field. The turbulence models with better predictions of the turbulence intensity, such as Gatski-Speziale’s ARSM model, can yield better predictions of the global characteristics of the flow field, e.g. the reattachment lengths for the backward-facing step flow and the sudden expansion pipe flow, or the discharge coefficient, film thickness and the liquid sheet outer surface position for the atomizer flows. The standard kε model predicts stronger turbulence intensity as compared to the other models and therefore yields smaller film thickness and larger liquid sheet outer surface position. In average, the ARSM model gives both quantitatively and qualitatively better results as compared to the standard kε model and the low Reynolds number models.  相似文献   

5.
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate ɛτ) equations were considered. The emphasis of this paper is focused on the effects of the ɛτ-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate of change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters, given by /ɛ, ττ, , Sk/ɛ and G/ɛ, becoming constant. Here, and τ are the production of turbulent kinetic energy k and temperature variance , respectively, ɛ and ɛτ are their respective dissipation rates, R is the mixed time scale ratio, G is the buoyant production of k and S is the mean shear gradient. Calculations show that the ɛτ-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular ɛτ-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the ɛ-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence. Received 21 April 2000 and accepted 21 February 2001  相似文献   

6.
External heat transfer prediction is performed in two-dimensional turbine blade cascades using the Reynolds-averaged Navier–Stokes equations. For this purpose, six different turbulence models including the algebraic Baldwin–Lomax (AIAA paper 78-257, 1978), three low-Re k−ɛ models (Chien in AIAA J 20:33–38, 1982; Launder and Sharma in Lett Heat Mass Transf 1(2):131–138, 1974; Biswas and Fukuyama in J Turbomach 116:765–773, 1994), and two k−ω models (Wilcox in AIAA J 32(2):247–255, 1994) are taken into account. The computer code developed employs a finite volume method to solve governing equations based on an explicit time marching approach with capability to simulate subsonic, transonic and supersonic flows. The Roe method is used to decompose the inviscid fluxes and the gradient theorem to decompose viscous fluxes. The performance of different turbulence models in prediction of heat transfer is examined. To do so, the effect of Reynolds and Mach numbers along with the turbulent intensity are taken into account, and the numerical results obtained are compared with the experimental data available.  相似文献   

7.
Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8×103 to 1.0×105, with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2–3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5–6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed. The project supported by the National Natural Science Foundation of China and the Key Laboratory for Hydrodynamics of NDCST.  相似文献   

8.
The flow and heat transfer characteristics of an unconfined air jet that is impinged normally onto a heated flat plate have been experimentally investigated for high Reynolds numbers ranging from 30,000 to 70,000 and a nozzle-to-plate spacing range of 1–10. The mean and turbulence velocities by using hot-wire anemometry and impingement surface pressures with pressure transducer are measured. Surface temperature measurements are made by means of an infrared thermal imaging technique. The effects of Reynolds number and nozzle-to-plate spacing on the flow structure and heat transfer characteristics are described and compared with similar experiments. It was seen that the locations of the second peaks in Nusselt number distributions slightly vary with Reynolds number and nozzle-to-plate spacing. The peaks in distributions of Nusselt numbers and radial turbulence intensity are compatible for spacings up to 3. The stagnation Nusselt number was correlated for the jet Reynolds number and the nozzle-to-plate spacing as Nu stRe 0.69(H/D)0.019.  相似文献   

9.
In this research the fluid dynamics characteristics of a stellar turbulent jet flow is studied numerically and the results of three dimensional jet issued from a stellar nozzle are presented. A numerical method based on control volume approach with collocated grid arrangement is employed. The turbulent stresses are approximated using kε and kω models with four different inlet conditions. The velocity field is presented and the rate of decay at jet centerline is noted. Special attention is drawn on the influence of corner angle and number of wings on mixing in stellar cross section jets. Stellar jets with three; four and five wings and 15–65° corner angles are studied. Also the effect of Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the stellar jet is studied. The Numerical results show that the jet entrains more with corner angle 65° and five wings number. The jet is close to a converged state for high Reynolds numbers. Also the influence of the inflow conditions on the jet characteristics is so strong.  相似文献   

10.
This study investigates the experimentally observed hysteresis in the mean flow field of an annular swirling jet with a stepped‐conical nozzle. The flow is simulated using the Reynolds‐averaged Navier–Stokes (RANS) approach for incompressible flow with a k–ε and a Reynolds stress transport (RSTM) turbulence model. Four different flow structures are observed depending on the swirl number: ‘closed jet flow’, ‘open jet flow low swirl’, ‘open jet flow high swirl’ and ‘coanda jet flow’. These flow patterns change with varying swirl number and hysteresis at low and intermediate swirl numbers is revealed when increasing and subsequently decreasing the swirl. The influence of the inlet velocity profile on the transitional swirl numbers is investigated. When comparing computational fluid dynamics with experiments, the results show that both turbulence models predict the four different flow structures and the associated hysteresis and multiple solutions at low and intermediate swirl numbers. Therefore, a good agreement exists between experiments and numerics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
The paper explores the possibilities that different turbulence closures offer, for in‐depth analysis of a complex flow. The case under investigation is steady, turbulent flow in a pipe with sudden expansion without/with normal‐to‐wall injection through jets. This is a typical geometry where generation of turbulence energy takes place, due to sudden change in boundary conditions. This study is aimed at investigating the capability of a developed computational program by the present authors with three different turbulence models to calculate the mean flow variables. Three two‐equation models are implemented, namely the standard linear k ? ε model, the low Reynolds number k ? ε model and the cubic nonlinear eddy viscosity (NLEV) k ? ε model. The performance of the chosen turbulence models is investigated with regard to the available data in the literature including velocity profiles, turbulent kinetic energy and reattachment position in a pipe expansion. In order to further assess the reliability of the turbulence models, an experimental program was conducted by the present authors also at the fluid mechanics laboratory of Menoufiya University. Preliminary measurements, including the surface pressure along the two walls of the expansion pipe and the pressure drop without and with the presence of different arrangements of wall jets produced by symmetrical or asymmetrical fluid cross‐flow injection, are introduced. The results of the present studies demonstrate the superiority of the cubic NLEV k ? ε model in predicting the flow characteristics over the entire domain. The simple low Reynolds number k ? ε model also gives good prediction, especially when the reattachment point is concerned. The evaluation of the reattachment point and the pressure‐loss coefficient is numerically addressed in the paper using the cubic NLEV k ? ε model. The results show that the injection location can control the performance of the pipe‐expansion system. It is concluded that the introduction of flow injection can increase the energy loss in the pipe expansion. The near‐field turbulence structure is also considered in the present study and it is noticed that the turbulence level is strongly affected by the cross‐flow injection and the jet location. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Two‐dimensional transient laminar incompressible offset jet is simulated numerically to gain insight into convective recirculation and flow processes induced by an offset jet. The behaviour of the jet with respect to offset ratio (OR) and Reynolds number (Re) are described in detail. The transient development of the velocity is simulated for various regions: recirculation, impingement and wall jet development. It is found that the reattachment length is dependent on both Re and OR for the range considered. Simulations are made to show the effect of entrainment on recirculation eddy. A detailed study of u velocity decay is reported. The decay rate of horizontal velocity component (u) is linear in impingement region. It is found that at high OR, velocity decay depends on Re only. Velocity profile in the wall jet region shows good agreement with experimental as well as similarity solutions. It is found that the effect of Re and OR are significant to bottom wall vorticity up to impingement region. Far downstream bottom wall vorticity is independent of OR. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Traditional turbulence models using constant turbulent Prandtl number fail to predict the experimentally observed anisotropies in the thermal eddy diffusivity and thermal turbulent intensity fields. Accurate predictions depend strongly on the turbulence model employed. Consequently, the objective of this paper is to assess the performance of turbulence model with variable turbulent Prandtl number in predicting of thermal and scalar fields quantities. The model is applied to axisymmetric turbulent round jet with variable density and in turbulent hydrogen diffusion flames using the flamelet concept. The k − ɛ turbulence model is used in conjunction with thermal field; the model involves solving supplemental scalar equations for the temperature variance and its dissipation rate. The model predictions are compared with available experimental data for the purpose of validating model. In reacting cases, velocity and scalar (including temperature and mass fractions) predictions agree relatively well in the near field of the investigated diluted hydrogen flames.  相似文献   

14.
The flow characteristics of both confined and unconfined air jets, impinging normally onto a flat plate have been experimentally investigated. The mean and turbulence velocities, and surface pressures were measured for Reynolds numbers ranging from 30,000 to 50,000 and the nozzle-to-plate spacings in range of 0.2–6. Smoke-wire technique is used to visualize the flow behavior. The effects of Reynolds number, nozzle-to-plate spacing and flow confinement on the flow structure are reported. In the case of confined jet, subatmospheric regions occur on both impingement and confinement surfaces at nozzle-to-plate spacings up to 2 for all Reynolds numbers in consideration and they lie up to nearly the same radial location at both surfaces. However, there is no evidence of the subatmospheric region in unconfined jet. It is concluded that there exists a linkage among the subatmospheric region, turbulence intensity and the peaks in heat transfer coefficients for low spacings in impinging jets.  相似文献   

15.
This first segment of the two‐part paper systematically examines several turbulence models in the context of three flows, namely a simple flat‐plate turbulent boundary layer, an axisymmetric separating flow, and a swirling flow. The test cases are chosen on the basis of availability of high‐quality and detailed experimental data. The tested turbulence models are integrated to solid surfaces and consist of: Rodi's two‐layer kε model, Chien's low‐Reynolds number kε model, Wilcox's kω model, Menter's two‐equation shear‐stress‐transport model, and the one‐equation model of Spalart and Allmaras. The objective of the study is to establish the prediction accuracy of these turbulence models with respect to axisymmetric separating flows, and flows of high streamline curvature. At the same time, the study establishes the minimum spatial resolution requirements for each of these turbulence closures, and identifies the proper low‐Mach‐number preconditioning and artificial diffusion settings of a Reynolds‐averaged Navier–Stokes algorithm for optimum rate of convergence and minimum adverse impact on prediction accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
A new high-resolution laser Doppler anemometer (LDA) has been developed with a working distance of 350 mm, allowing operation in lab-scale wind tunnels. The measurement volume size is 35 μm in diameter by 60 μm in length, allowing resolution of the smallest turbulence scales even at fairly high Reynolds numbers. The controversial question of velocity and validation bias in LDA data is resolved with an experimental method for measuring and removing those effects. Uncertainty estimates are also derived for all the mean and Reynolds stress measurements. Received: 27 June 1999/Accepted: 30 August 2000  相似文献   

17.
Laminar-turbulent transition in the mixing layer of supersonic nitrogen and argon jets has been studied experimentally using a local pulse diagnostic technique based on the Rayleigh light scattering effect. It was found that, in the argon jet, the transition to turbulence occurs at smaller Reynolds numbers than in the nitrogen jet. Among the possible reasons for this, the effects of the specific heat ratio and the second viscosity on the transition to turbulence are discussed. Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 196–200, May–June, 1998. The work received financial support from the Russian Foundation for Basic Research (project No. 96-01-01565).  相似文献   

18.
In this paper, we report results of a numerical investigation of turbulent natural gas combustion for a jet in a coflow of lean combustion products in the Delft-Jet-in-Hot-Coflow (DJHC) burner which emulates MILD (Moderate and Intense Low Oxygen Dilution) combustion behavior. The focus is on assessing the performance of the Eddy Dissipation Concept (EDC) model in combination with two-equation turbulence models and chemical kinetic schemes for about 20 species (Correa mechanism and DRM19 mechanism) by comparing predictions with experimental measurements. We study two different flame conditions corresponding to two different oxygen levels (7.6% and 10.9% by mass) in the hot coflow, and for two jet Reynolds number (Re = 4,100 and Re = 8,800). The mean velocity and turbulent kinetic energy predicted by different turbulence models are in good agreement with data without exhibiting large differences among the model predictions. The realizable k-ε model exhibits better performance in the prediction of entrainment. The EDC combustion model predicts too early ignition leading to a peak in the radial mean temperature profile at too low axial distance. However the model correctly predicts the experimentally observed decreasing trend of lift-off height with jet Reynolds number. A detailed analysis of the mean reaction rate of the EDC model is made and as possible cause for the deviations between model predictions and experiments a low turbulent Reynolds number effect is identified. Using modified EDC model constants prediction of too early ignition can be avoided. The results are weakly sensitive to the sub-model for laminar viscosity and laminar diffusion fluxes.  相似文献   

19.
This large eddy simulation (LES) study is applied to three different premixed turbulent flames under lean conditions at atmospheric pressure. The hierarchy of complexity of these flames in ascending order are a simple Bunsen-like burner, a sudden-expansion dump combustor, and a typical swirl-stabilized gas turbine burner–combustor. The purpose of this paper is to examine numerically whether the chosen combination of the Smagorinsky turbulence model for sgs fluxes and a novel turbulent premixed reaction closure is applicable over all the three combustion configurations with varied degree of flow and turbulence. A quality assessment method for the LES calculations is applied. The cold flow data obtained with the Smagorinsky closure on the dump combustor are in close proximity with the experiments. It moderately predicts the vortex breakdown and bubble shape, which control the flame position on the double-cone burner. Here, the jet break-up at the root of the burner is premature and differs with the experiments by as much as half the burner exit diameter, attributing the discrepancy to poor grid resolution. With the first two combustion configurations, the applied subgrid reaction model is in good correspondence with the experiments. For the third case, a complex swirl-stabilized burner–combustor configuration, although the flow field inside the burner is only modestly numerically explored, the level of flame stabilization at the junction of the burner–combustor has been rather well captured. Furthermore, the critical flame drift from the combustor into the burner was possible to capture in the LES context (which was not possible with the RANS plus kɛ model), however, requiring tuning of a prefactor in the reaction closure.  相似文献   

20.
The initial stage of the development of a wall jet under the influence of strong external turbulence has been studied in a novel shear-flow mixing-box experiment. A fully developed channel flow of depth h (40 mm) enters along the top wall of a cuboidal box of height 11 h in which a combination of oscillatory and turbulent velocity fluctuations are generated by a vertical oscillating grid at the midplane 5 h below the wall. When the ratio of the rms grid-generated velocity fluctuations, , to the local mean velocity inside the wall jet layer, u, is greater than about 0.1, significant changes are observed in the mean shear profile and in the eddy structure of the wall jet. The wall jet thickness increases by approximately 25% but the maximum velocity decreases by less than 10% compared to the case without the external turbulence. Fluctuations of the streamwise velocity component increase as expected in the outer part of the wall jet, but the most significant result is the increase by 70% of the fluctuations in the boundary layer close to the wall. CFD simulations using the k-ɛ RNG of the FLUENT CFD Code do not properly model the effect of the large scale external turbulence in this experiment. However, an artificial method, which introduces a series of small inlet/outlet jets to represent external turbulence, approximately simulates the overall effects of the oscillating grid on the wall jet, but does not simulate the amplification of the near wall turbulence. F. T. M. Nieuwstadt: Rest in peace (1946–2005).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号