首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel 1-(2'-α-O-D-glucopyranosyl ethyl) 2-arylbenzimidazoles has been prepared via one-pot glycosylation of ethyl-1-(2'-hydroxyethyl)-2-arylbenzimidazole-5-carboxylate derivatives. Synthesis of the 2-arylbenzimidazole aglycones from 4-fluoro-3-nitrobenzoic acid was accomplished in four high-yielding steps. The reduction and cyclocondensation steps for the aglycone synthesis proceeded efficiently under microwave irradiation to afford the appropriate benzimidazoles in excellent yields within 2-3 min. Glycosylation of the hydroxyethyl aglycones with the perbenzylated 1-hydroxy- glucopyranose, pretreated with the Appel-Lee reagent, followed by catalytic hydrogenolysis delivered the desired 1-(2'-α-O-D-glucopyranosyl ethyl) 2-aryl-benzimidazoles in a simple and straightforward manner.  相似文献   

2.
Bi1/2Na1/2TiO3 (described as BNT) is considered as a promising lead-free ferroelectric material. In this study, BNT sol was synthesized by mixing bismuth oxide and sodium carbonate dissolved in nitric acid and titanium tetraisopropoxide in ethylene glycol, which was called a solution-sol–gel method and very cost-effective synthesis method, while very high-cost metal alkoxides are used as precursors in conventional sol–gel method. FT-IR and Raman analyses indicated that the chemical modification of titanium tetraisopropoxide by glycolic acid or oxalic acid occurred and the synthesis of stable BNT sol was possible. In the results of high temperature X-ray analysis and DTA/TG analyses, the crystallization of BNT was thought to occur at between 500 and 700C following the evaporation of solvent and organics and poly-condensation processes. The main crystal phase of the film was identified as rhombohedral crystal phase of Bi1/2Na1/2TiO3 by XRD and Raman spectroscopy analyses, although a small amount of Bi4Ti3O12 existed as a second phase.  相似文献   

3.
The results of simulation of the oxidation reaction of styrene and its methyl (two isomers) and phenyl derivatives with molecular oxygen in the excited singlet state (1Δg) have enabled the conclusion that the reaction can proceed through several mechanisms. For styrene and its phenyl derivative, three reaction channels are possible, and for the methyl derivative, there are four possible channels. For the first two substrates, the major channel is 1,2-addition to form dioxetane; for the methyl derivatives, an extra channel to give a hydroperoxide species is possible in addition to the above channel. The multichannel reaction character revealed by calculations makes it possible to qualitatively understand the reason behind the moderate selectivity (no more than 70%) of such reactions in the case of styrene and its derivatives.  相似文献   

4.
5.
The addition of dimethylamine to O-phenyl 2-chloropropylisothiocyanatophosphonate afforded the six-membered cyclic product, viz., 1-thia-3-aza-45-phosphacyclohex-2-ene.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1657–1659, August, 2004.  相似文献   

6.
A phase diagram of the PbF2–SnF2 system has been studied by differential thermal analysis and X-ray powder diffraction. The system forms Pb1–хSnхF2 (х ≤ 0.33) solid solution and three compounds. Pb2SnF6 decomposes in solid state by a peritectoid reaction at 350°С; Pb3Sn2F10 and PbSnF4 melt by peritectic reactions at 565 and 380°С, respectively. The eutectic coordinates are 180°С, 90 mol % SnF2.  相似文献   

7.
Quasi-classical trajectory calculations and stochastic one-dimensional chemical master equation simulation methods are used to study the dynamics of the reaction of amidogen radical [NH2(2B1)] with hydroperoxyl radical [HO2(2A″)] on the lowest singlet electronic state. The title complex reaction takes place on a multi-well multichannel potential energy surface consisting of three deep potential wells and one van der Waals complex. In quasi-classical trajectory calculations a new analytical potential energy surface based on CCSD(T)/aug-cc-pVTZ//MPW1K/6-31+G(d,p) ab initio method was driven and used to study the dynamics of the title reaction. In quasi-classical trajectory calculations, the reactive cross sections and reaction probabilities are determined for 200–2000 K relative translational energies to calculate the rate constants. The same ab initio method was used to have the necessary data for solving the one-dimensional chemical master equation to calculate the rate constants of different channels. In solving the master equation, the Lennard-Jones potential model was used to form the collision between the collider gases. The fractional populations of different intermediates and products in the early stages of the reaction were examined to determine the role of the energized intermediates and the van der Waals complex on the dynamics of the title reaction. Although the calculated total rate constants from both methods are in good agreement with the reported experimental values in the literature, the quasi-classical trajectory simulation predicts the formation of NH2O + OH as the major channel in the title reaction in accordance with the previous studies (Sumathi and Peyerimhoff, Chem. Phys. Lett., 263:742–748, 1996), while the stochastic master equation simulation predicts the formation of HNO + H2O as the major products.  相似文献   

8.
Kinetics of the oxidation of thiourea (tu) by heteropoly-α2-17-tungsto-1-vanadodiphosphate anion, α2-[P2VVW17O62]7?, have been studied spectrophotometrically in aqueous acidic medium at 25 °C. At low pH (2.4–3.0), the neutral form of tu is the only reactive species. At higher pH (4.2–4.9), both neutral and deprotonated forms of tu participate in the reaction. The observed mixed-order kinetics suggest two parallel reactions: one in which the order in [tu] is unity, and a second in which it is two. In both cases, the order in [α2-[P2VVW17O62]7?] is unity. Based on the kinetic studies, a mechanism is proposed, in which a second-order proton-coupled electron transfer involving NH2CSNH2 and α2-[P2VVW17O62]7? proceeds through a sequential electron transfer, followed by proton transfer such that the reaction is an “activation-controlled” outer-sphere electron transfer process. By applying the Marcus equation, the self-exchange rate constants for the couples \({\text{NH}}_{2} {\text{CSNH}}_{2}^{ \cdot + }\)/NH2CSNH2 and α2-[P2VVW17O62]7?2-[P2VIVW17O62]8? were evaluated.  相似文献   

9.
The temperature dependence of the phase composition of KNO3—NaNO2 mixtures in the 0 to 1 molar fraction range of concentrations of KNO3 is investigated. A phase diagram of the KNO3—NaNO2 binary system in the range of concentrations from 0 to 1 molar fractions of KNO3 is drawn on the basis of DTA results. The composition of the eutectic mixture and its melting temperature is determined experimentally.  相似文献   

10.
A powder mixture of Al/TiO2/H3BO3 = 10/3/6 in molar ratio was used in this study to form the Al2O3–TiB2 ceramic composite via thermite reactions (combustion synthesis). As no combustion synthesis occurred for an unmilled sample in a furnace, the mixture was milled in a planetary ball-mill for various milling times, and the as-milled samples were in situ synthesized in the furnace at a heating rate of 10 °C/min. The differential scanning calorimetry (DSC) measurements were performed with the same heating rate on the unmilled and the as-milled samples to evaluate the influences of the milling on the mechanisms and efficiencies of reactions. Although no combustion synthesis occurred for the unmilled sample in the furnace, two exothermic peaks were detected in its DSC curve after the melting of the Al. For the as-milled samples, significant changes revealed in the DSC curves, suggest that the milling process before the combustion synthesis changed the mechanisms and efficiencies of reactions. In addition, the intensity and the temperature of the exothermic peaks in the DSC curves changed by increasing the milling time. According to the XRD analyses, by enhancing the milling time, the purity of the final products would increase, confirming that the efficiency of the reactions increased. Finally, the microstructures of the as-milled and as-synthesized samples were examined by a SEM, and it was shown that the morphology of the reactant powders was altered by increasing the milling time.  相似文献   

11.
The results of simulation of oxidation reactions of ethylene derivatives with different substituents (F atoms, CH3O and CH3 groups) and butadiene molecule with participation of 1O2 (1Δg) have shown the possibility to realize different routes for the majority of the considered reactions. The largest product variety is obtained for butadiene and CH3 derivatives of ethylene. For butadiene, along with 1,2-cycloaddition reactions resulting in four-membered dioxetane (which is realized in all cases), the possibility to form six-membered cyclic epidioxides (1,4-addition) and diepoxide products with two three-membered rings (epoxidation) has been found. The formation of hydroperoxide forms along with 1,2-addition reactions is also possible for all CH3 derivatives of ethylene. Formation conditions and relative stability of the noted products have been analyzed for each case and certain features of the revealed reaction pathways with the transfer of two oxygen atoms have been discussed.  相似文献   

12.
Gibbs free energy minimization was used to consider the formation of complex molybdenum oxide (Mo2O6) at 2400 K in the range of pressures from 1 to 1 to 1 × 10−5 bar for the basic component ratio Mo: O2 = 1: 1. Several ways are shown to lead to Mo2O6 formation: when P = 1 bar, a synthesis reaction involving simple molybdenum oxides (MoO, MoO2, MoO3) is the main way; when P = 1 × 10−3 bar or lower, reactions of (MoO3) n (n = 3−5) complex oxides with metallic molybdenum and molybdenum monoxide (MoO) are.  相似文献   

13.
The first stage of the solid-phase reaction of Na2O2 and Fe2O3 yields a tetravalent iron derivative. The product is unstable and disproportionates to form compounds with different oxidation states of iron. Analysis of their Mössbauer spectra was performed with the DISCVER program based on the Afanas’ev-Chuev method. At the early stage of analysis, the program identifies the maximal possible number of well-defined lines in the spectrum with a specified statistical quality and, thus, discerns a large number of known and unknown iron derivatives (phases) in samples of complex composition. Previously unknown highest oxidation states of iron from +5 to +8 were identified.  相似文献   

14.
The multi-bond dissociation dynamics of oxalyl chloride ((ClCO)2) is investigated by ab initio calculation. Dissociation of C-Cl bond of oxalyl chloride in the ground state is of barrierless. After the absorption of a photon, (ClCO)2 is excited to the first excited state and one of its C-Cl bonds is broken to yield Cl and ClCOCO* free radicals. In addition, ClCOCO* with high energy is prone to release energy (Q), and to turn into ClCOCO in the ground state. The energy (Q) is adequate for ClCOCO to break down into ClCOand CO, and even for ClCO into Cl and CO. The result is consistent with the experimental data that Kong reported.  相似文献   

15.
In this study, Pd nanoparticle-modified magnetic Sm2O3–ZrO2 material (Pd–Fe3O4–Sm2O3–ZrO2) as multifunctional catalyst was fabricated and used for catalytic reduction of 2-nitrophenol compound, degradation of methylene blue and rhodamine B dyes, which are toxic pollutants. The magnetic material was used for the first time as a catalyst for the reduction and degradation studies. Pd nanoparticle-modified magnetic Sm2O3–ZrO2 catalyst was prepared using the deposition–precipitation methods and were characterized by X-ray diffraction, scanning electron microscopy, atomic absorption spectrometry, Raman spectroscopy and BET surface analyzer. The Pd nanoparticle-modified magnetic Sm2O3–ZrO2 material can lead to high catalytic activity for the reduction of 2-nitrophenol and degradation of rhodamine B and methylene blue with >?95% conversion within ~?2 and 80 s even when the content of Pd in it is as low as 5.8 wt%.  相似文献   

16.
We have established that the calcination temperature for ZrO2–Y2O3 catalysts changes their acid–base spectrum, which determines the direction of the conversions in the mixture MeOH + CO2. For samples with predominance of acid sites, the major product is dimethyl ether. As the content of base sites increases, methyl formate is formed. Activity in dimethyl carbonate synthesis is exhibited only by samples in which the basicity is higher than the acidity or close to it.  相似文献   

17.
SiO2–ZrO2 xerogel was prepared via a sol–gel method followed by ambient pressure drying. The xerogel was characterized by X-ray diffraction, thermal analysis, fourier transform infrared spectroscopy, scanning electron microscopy, and nitrogen adsorption/desorption analysis. The results showed that the SiO2–ZrO2 xerogel was amorphous and possessed a three-dimensional network structure with a narrow distribution of pore size. Its specific surface area reached up to 525.6?m2/g after 600?°C heat treatment, with a pore volume of 1.16?cm3/g and an average pore size of 8.5?nm. In order to explore the potential application of the SiO2–ZrO2 xerogel for the removal of organic dyes, its adsorption capacity was studied by removal of Rhodamine B (RhB) from aqueous solution through batch experiments. The results showed that the adsorption process of RhB onto SiO2–ZrO2 xerogel was slightly promoted under acidic conditions and significantly inhibited under strong alkaline conditions. And adsorption equilibrium can be achieved in 30?min. The kinetic data of the adsorption were analyzed using pseudo-first-order and pseudo-second-order models. The results indicated that the pseudo-second-order model described the adsorption mechanism better. The sorption behavior was evaluated by Langmuir and Freundlich isotherm models. The results suggested that the Langmuir model could accurately describe the experimental data and the adsorption capacity qmax was 177.7?mg/g. Thermodynamic analysis revealed that the adsorption of RhB onto the SiO2–ZrO2 xerogel was both spontaneous and exothermic in nature. Thus, the as-prepared SiO2–ZrO2 xerogel might be used as an adsorbent for wastewater treatment, especially for the removal of dyes.  相似文献   

18.
Mesoporous SiO2–TiO2 was synthesized by the sol–gel method using Si(OC2H5)4, Ti(OC2H5)4, and stearyltrimethylammonium chloride. By using acetylacetone as the capping agent of Ti(OC2H5)4, homogeneous SiO2–TiO2 composite was obtained. Spherical mesoporous SiO2–TiO2 was also synthesized by the sol–gel method using W/O emulsion under microwave irradiation. The specific surface area of these mesoporous SiO2–TiO2 materials decreased when the Ti/Si molar ratio was higher than 0.1, which indicated that Ti was homogeneously distributed in mesoporous SiO2 matrix at Ti/Si ≦ 0.1. The photocatalytic activity of mesoporous SiO2–TiO2 materials was investigated by the degradation of methylene-blue in water under UV light irradiation. Mesoporous SiO2–TiO2 was effective for the adsorption–decomposition of methylene-blue.  相似文献   

19.
The crystallization of K2O·TiO2·3GeO2 glass under non-isothermal condition was studied. In powdered glass with particle sizes less than 0.15 mm, surface crystallization was dominant and an activation energy of crystal growth of E a,s=327±50 kJ mol−1 was calculated. In the size range 0.15 to 0.45 mm, both surface and volume crystallization occurred. For particle sizes >0.45 mm, volume crystallization dominated with spherulitic morphology of the crystals growth and E a,v=359±64 kJ mol−1 was calculated.  相似文献   

20.
The state of the active constituents of the freshly prepared PdCl2-CuCl2/γ-Al2O3 catalyst for the low-temperature oxidation of the carbon monoxide by molecular oxygen was studied by X-ray absorption spectroscopy (XAS), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance IR Fourier transform spectroscopy (DRIFTS). It was shown that copper in the form of a crystalline phase of Cu2Cl(OH)3 with the structure of the mineral paratacamite and palladium chloride in an amorphous state occurred on the surface of γ-Al2O3. According to XAS data, the local environment of palladium consisted of four chlorine atoms, which formed a flat square with an increased distance between palladium and one of the chlorine atoms. The evolution of the local environments of copper and palladium upon a transition from the initial salts to the impregnating solutions and chlorides on the surface of γ-Al2O3 was considered. The role of γ-Al2O3 in the formation of the Cu2Cl(OH)3 phase was discussed. It was found by the DRIFTS method that linear (2114 cm−1) and bridging (1990 and 1928 cm−1) forms of coordinated carbon monoxide were formed upon the adsorption of CO on the catalyst surface. The formation of CO2 upon the interaction of coordinated CO with atmospheric oxygen was detected. Active sites including copper and palladium were absent from the surface of the freshly prepared catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号