首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The influence of two multiarm star polymers, hyperbranched poly(glycidol)-b-poly(ε-caprolactone) of different arm lengths, on the thermal curing and the photocuring of a diglycidyl ether of bisphenol A epoxy resin (DGEBA) is studied. Star polymer with short arms PCL-10 decelerates more the thermal curing than the polymer with long arms PCL-30 because the latter is less solubilized in the epoxy matrix and its effect on the polymerization of the resin and the thermal–mechanical properties is less important. The kinetic triplet corresponding to the thermal curing of the different formulations has been determined. In the analysis of the photocuring process, we have also found that short-arm star PCL-10 is better solubilized in the epoxy matrix and its effect on the photocuring kinetics is more significant than that of the long-arm star. The effect of both polymers on the thermal–mechanical properties of the cured thermosets is less important due to the lower solubility at the relatively low photocuring temperatures.  相似文献   

2.
The photocuring process of the diglycidyl ether of bisphenol A (DGEBA) with the bislactone 1,6‐dioxaspiro[4,4]nonane‐2,7‐dione (s(γ‐BL)) was studied. Triarylsulfonium hexafluoroantimonate was employed as photoinitiator. FTIR/ATR was used to study the evolution of epoxy, lactone, and intermediate spiroorthoester groups to identify the different reactions that take place during the photocuring process. Photo‐DSC and DSC were used to study the thermal evolution of the photocuring process and to assess the Tg of the fully cured material. Thermogravimetric analysis (TGA) was used to determine the thermal stability of the fully cured material. The thermomechanical properties of the materials were investigated using dynamic mechanical‐thermal analysis. Shrinkage undergone during photocuring and gelation was studied with TMA. A strong influence of the photocuring temperature on the photocuring process of the DGEBA‐ s(γ‐BL) system was observed. Differences in the reactivity of the different species were observed with respect to the thermally cured system using ytterbium triflate as cationic thermal initiator. As a consequence, photocured materials exhibited a superior thermal stability and lower flexibility. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5446–5458, 2007  相似文献   

3.
In order to develop a one‐component photo‐curing system for epoxy resin, the photo‐crosslinking reactions of the diglycidyl ether of bisphenol A (DGEBA) in the presence of a multifunctional photobase generator (PBG) containing oxime–urethane groups were studied. The cross‐linking of DGEBA films and adhesion properties of DGEBA formulations containing the PBG and benzophenone increased with irradiation dose, post‐exposure baking (PEB) time, PEB temperature, and the number of oxime–urethane groups in the PBG. A synergistic effect was observed between the PBG and a base amplifier on the film cross‐linking of DGEBA. A trifunctional PBG containing oxime–urethane groups was found to be the most efficient PBG in terms of the photo‐crosslinking and adhesion properties of the DGEBA‐based formulations. Moreover, the devised formulations, including the PBG and benzophenone, were stable for at least 1 month at room temperature. The photocuring system developed in this study appears to offer a one‐pack epoxy resin curing system with practical useful properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

5.
Nonaqueous synthesis of nanosilica in diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly with DGEBA epoxy matrix, at 80 °C for 4 h under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nanosilica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nanosilica obtained from this direct thermal synthetic process. The morphology of the nanosilica synthesized in epoxy matrix has also been analyzed by TEM and SEM studies. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nanosilica in the DGEBA epoxy resin have been discussed in this study. From the DSC analysis, it was found that the nanosilica containing epoxy exhibited the same curing profile as pure epoxy resin, during the curing reaction with 4,4′‐diaminodiphenysulfone (DDS). The thermal‐cured epoxy–nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221 °C, which was almost 50 °C higher than that of pure DGEBA–DDS–BF3MEA‐cured resin network. Almost 60 °C increase in thermal degradation temperature has been observed during the TGA of the DDS‐cured epoxy–nanosilica composites containing 40% of TEOS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 757–768, 2006  相似文献   

6.
Hexaglycidyl cyclotriphosphazene (HGCP) was synthesized, and characterized by FTIR, 31P, 1H, and 13C-NMR. This compound was used as a reactive flame retardant to blend with commercial epoxy resin DGEBA (Diglycidyl ether of bisphenol A). Its effect on the DGEBA decomposition pathways was characterized by studying both gas and solid phases produced during thermogravimetric analysis (TGA). The gases evolved during TGA in air were studied by means of thermogravimetry coupled with Fourier transform infrared spectroscopy (TG–FTIR), while the solid residues were analysed by FTIR and scanning electron microscopy (SEM). The results showed that HGCP presents a good dispersion in DGEBA, and the blend thermoset with 4,4′-methylene-dianiline (MDA) curing agent leads to a significant improvement of the thermal stability at elevated temperature with higher char yields compared with pure DGEBA thermoset with the same curing agent. Improvement has also been observed in the fire behaviour of blend sample.  相似文献   

7.
Effect of structure on thermal behaviour of epoxy resins   总被引:1,自引:0,他引:1  
The paper deals with the curing behaviour of diglycidyl ether of bisphenol-A (DGEBA) using three novel multifunctional aromatic amines having phosphine oxide and amide-acid linkages. The amines were prepared by reacting tris(3-aminophenyl)phosphine oxide (TAP) with 1,2,4,5-benzenetetracarboxylic acid anhydride (P)/4,4-(hexafluoroisopropylidene)diphthalic acid anhydride (F)/3,3,4,4-benzophenonetetracarboxylic acid dianhydride (B). Amide-acid linkage in these amines is converted to thermally stable imide linkage during curing reaction. Curing temperatures of DGEBA were higher with phosphorylated amines than the conventional amine 4,4-diamino diphenyl sulphone (D). A decrease in initial decomposition temperature and higher char yields were observed when phosphorus containing amide-acid amines were used as curing agents for DGEBA.  相似文献   

8.
In this report, a novel phosphorus/silicon‐containing reactive flame retardant, hexa(3‐triglycidyloxysilylpropyl)triphosphazene (HGPP), was synthesized and characterized by Fourier transform infrared spectrometry and nuclear magnetic resonance spectra (1H, 31P, and 29Si), respectively. To prepare cured epoxy, HGPP had been co‐cured with diglycidyl ether of bisphenol‐A (DGEBA) via 4,4‐diaminodiphenylsulfone as a curing agent. The mechanical, thermal, and flame retardant properties of the cured epoxy were evaluated by dynamic mechanical analysis, thermogravimetric analysis, and limiting oxygen index (LOI). According to these results, it could be found that incorporation of HGPP in the cured epoxy system showed good thermal stability, high LOI values, and high char yield at high temperature. As moderate loading of HGPP in the epoxy system, its storage modulus and glass transition temperature were higher than those of neat DGEBA. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, the latent thermal cationic initiators triphenyl benzyl phosphonium hexafluoroantimonate (TBPH) and benzyl‐2‐methylpyrazinium hexafluoroantimonate (BMPH) were newly synthesized and characterized with IR, 1H NMR, and P NMR spectroscopy. The thermal and mechanical properties of difunctional epoxy [diglycidyl ether of bisphenol A (DGEBA)] resins cured by 1 phr of either TBPH or BMPH were investigated. The DGEBA/TBPH system showed a higher curing temperature and a higher critical stress intensity factor than the epoxy/BMPH system. This could be interpreted in terms of the slow thermal diffusion rate and bulk structure of the four phenyl groups in TBPH. However, the decomposition activation energy derived from the Coats–Redfern method was lower for epoxy/TBPH. This result was probably due to the fact that a broken short‐chain structure was developed by the steric hindrance of TBPH in the difunctional epoxy resin. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2393–2403, 2003  相似文献   

10.
Summary Polymers have a great interest for the study and design of new materials. Among these materials are epoxy resins, that have good properties, such as low shrinkage during cure, good adhesion, high water and chemical resistance, etc. They have also fast and easy cure in a broad range of temperatures. TTT diagrams are very helpful to design new epoxy materials as they allow the search for very important final properties, such as thermal stability, conversion or glass transition temperature of a material cured through a selected curing cycle. In this work the dependence of the thermal stability on the selected curing cycle for a DGEBA/1,2 DCH system was studied.  相似文献   

11.
We propose three approaches to obtain flame‐retardant benzoxazines. In the first approach, we synthesize a novel benzoxazine (dopot‐m) from a phosphorus‐containing triphenol (dopotriol), formaldehyde, and methyl amine. Dopot‐m is copolymerized with a commercial benzoxazine [6′,6‐bis(3‐phenyl‐3,4‐dihydro‐2H‐1,3‐benzoxazineyl)methane (F‐a)] or diglycidyl ether of bisphenol A (DGEBA). The thermal properties and flame retardancy of the F‐a/dopot‐m copolymers increase with the content of dopot‐m. As for the dopot‐m/DGEBA curing system, the glass‐transition temperature of the dopot‐m/DGEBA copolymer is 252 °C, which is higher than that of poly(dopot‐m). The 5% decomposition temperature of the dopot‐m/DGEBA copolymer increases from 323 to 351 °C because of the higher crosslinking density caused by the reaction of phenolic OH and epoxy. In the second approach, we incorporate the element phosphorus into benzoxazine via the curing reaction of dopotriol and F‐a. After the curing, the thermal properties of the F‐a/dopotriol copolymers are almost the same as those of neat poly(F‐a), and this implies that we can incorporate the flame‐retardant element phosphorus into the polybenzoxazine without sacrificing any thermal properties. In the third approach, we react dopo with electron‐deficient benzoxazine to incorporate the element phosphorus. After the curing, the glass‐transition temperatures of polybenzoxazines decrease slightly with the content of dopo, mainly because of the smaller crosslinking density of the resultant polybenzoxazines. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3454–3468, 2006  相似文献   

12.
Electron beam (e-beam) curing is a technology that offers advantages over the thermal curing process, that usually requires high temperature and are time-consuming. E-beam curing is faster and occurs at low temperatures that help reduce residual mechanical stresses in a thermoset composite. The aim of the present study is to analyze the effects of cationic initiator (diaryliodonium hexafluoroantimonate) ranged from 1 to 3 wt% in DGEBA (diglycidyl ether of bisphenol A) epoxy resin when cured by a 1.5 MeV electron beam. The specimens were cured to a total dose of 200.4 kGy for 40 min. Analyses by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) show that the e-beam irradiated samples with 2 wt% cationic initiator were 96% cured obtained a glass transition temperature (tan δ) of 167 °C. The same epoxy resin, thermally cured for 16 h with an anhydride hardener, reached a Tg (tan δ) of 136 °C. So, the irradiated sample had its Tg increased approximately 20% and the curing process was much less time consuming.  相似文献   

13.
The purpose of this work is to analyse certain kinetic features related to thermoinduced and photoinduced isothermal curing in the 25/75 mass% bis-GMA/TEGDMA system. The kinetic parameters associated with photo and thermal curing were determined and compared using an isoconversional procedure and the kinetic model was obtained by means of a reduced master plot. In photocuring, the kinetic results obtained by means of this phenomenological methodology were compared with those obtained on the basis of mechanistic considerations. In this case, we estimated the propagation and termination constants associated with photocuring at different conversions. When the phenomenological procedure is performed, the rate constant decreases slightly during the curing process and the autoacceleration effect of the process is demonstrated in the kinetic model, which is autocatalytic. However, in the mechanistic model, this same effect is noted through an increase in the rate constants, while it is assumed that the kinetic model is in the order of n with n=1.  相似文献   

14.
The reaction mechanism of metal-containing and complex compound with epoxy oligomer of diglycidyl ether of bisphenol A (DGEBA) was studied using dynamic DSC technique. It is shown that cure reaction of the epoxy oligomers with copper acetate proceeds at two stages: through coordination of cation with the epoxy group, and through ionic polymerization at high temperatures. Mechanism of curing of DGEBA with copper chelate depends on equilibrium process of dissociation of the chelate which, in turn, depends not only on temperature of curing but also on concentration of the hardener. At the dissociation temperature of the hardener, polymerization proceeds according to ionic mechanism. Hardening of the epoxy oligomers due to interaction of epoxy groups with unconnected amine groups predominate at higher temperatures or at higher concentrations of the hardener. At low temperatures and small concentrations of the hardener, polymerization proceeds according to catalytic ionic mechanism. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Phenyl bisthioureas: 4,4′-(bisthiourea)diphenylmethane (DTM), 4,4′-(bisthiourea)diphenyl ether (DTE), and 4,4′-(bisthiourea)diphenyl sulfone (DTS) were synthesized and used as curing agents for the epoxy resin diglydicyl ether bisphenol A (DGEBA). Synthesized phenyl bisthioureas were characterized using FT-IR and 1H-NMR analysis. For comparison studies the epoxy system was also cured using the conventional aromatic amine 4,4′-diaminodiphenyl ether (DDE). Curing kinetics of epoxy/amine system was studied by dynamic and isothermal differential scanning calorimeter (DSC). Curing kinetic was evaluated based on model-free kinetics (MFK) and ASTM E 698 model, and the activation energy was compared with DDE. Curing system of phenyl bisthiourea link (DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS) shows two exothermic peaks, while that of the conventional aromatic amines showed only a single peak. The initial exothermic peak is due to the primary nitrogen of the thiourea group, and the exotherm at higher temperature is due to the presence of thiourea groups. Glass transition temperature (T g) of DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS cured resins were lowered by 323 K when compared to the widely used diaminodiphenyl ether (DDE) cured resin. Oxidation induction temperature measurement performed on DSC suggests that the DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS system cured resins has better oxidative stability when compared to cured DGEBA/DDE resin system.  相似文献   

16.
The photocuring process of widely used 3,4‐epoxycyclohexylmethyl 3′,4′‐epoxycyclohexane carboxylate has been investigated with differential scanning photocalorimetry and attenuated total reflection/Fourier transform infrared. Mixed salts of triarylsulfonium hexafluoroantimonate have been employed as the photoinitiator. The photocuring of the biscycloaliphatic resins exhibits a complex behavior: the overall heat of reaction (including dynamic thermal postcuring) depends on the photocuring temperature, surprisingly high reaction rates are observed at lower photocuring temperatures, and the range of the glass transition of the fully cured material broadens and shifts to higher temperatures as the photocuring temperature increases. It is assumed that the balance between the initiation step and the propagation step is responsible for the changes in the reaction mechanism that produce the observed experimental results. This balance may depend on the amount of the photoinitiator, the irradiation intensity, and the photocuring temperature. The structure and final properties of the material may therefore depend on the adjustment of these parameters. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 16–25, 2007  相似文献   

17.

In the present study, TEIA bioresin was blended with the diglycidyl ether bisphenol A (DGEBA) epoxy resin in different ratios (i.e. 10, 20, 30, 40 mass%), cured with methylhexahydrophthalic anhydride curing agent in the presence of 2-methylimidazole catalyst. The optimized composition of DGEBA and TEIA bioresin blends system was employed as an adhesive strength. The adhesive strength of the TEIA-modified DGEBA epoxy resin blend system was increased from 4.14 to 6.31 MPa on an aluminium substrate compared to the DGEBA epoxy resin. The curing kinetics of non-isothermal, DGEBA epoxy resin and its bio-based blend systems were investigated employing differential scanning calorimetry. An increase in the peak temperature and reduction in a heat of curing as well as activation energy in DGEBA epoxy resin were observed with the addition of TEIA bioresin content. The activation energy (Ea) of the DGEBA resin and their bio-based blend system were obtained from Kissinger and Flynn–Wall–Ozawa methods.

  相似文献   

18.
This work examines the curing kinetics, thermal properties, and decomposition kinetics of diglycidyl ether of bisphenol A (DGEBA) epoxies with three different curing agents, 2-(6-oxido-6H-dibenz(c,e)(1,2)oxaphosphorin-6-yl)-1,4-naphthalenediol (ODOPN), bisphenol A (BPA), and bisphenol S (BPS). The differential scanning calorimetry curing study reveals that the curing kinetics of the DGEBA/ODOPN epoxy is first order, independent of the scan rate. The ODOPN-containing epoxy, unlike the conventional BPA one, includes a phosphorus-containing bulky pendant aromatic group and results in an increase in the glass-transition temperature of 83 K, the char yield increases by a factor of 3, and the limiting oxygen index values increase from 23 to 27. For the BPS system, the glass-transition temperature increased slightly, and both the char yield and the limiting oxygen index value increased insignificantly when the test was conducted in air. Finally, the thermogravimetric analysis decomposition study in N2 from Ozawa's analysis demonstrates that the DGEBA/BPS epoxy has the highest activation energy, followed by the regular DGEBA/BPA system, and lastly the DGEBA/ODOPN has the lowest activation energy. The low activation energy for the ODOPN system is attributed to the initial decomposition of the phosphorus compound in the formation of an insulating layer.  相似文献   

19.
Octa(aminophenyl)silsesquioxane (OAPS) was used as the curing agent of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. A study on comparison of DGEBA/OAPS with DGEBA/4,4′-diaminodiphenyl sulfone (DDS) epoxy resins was achieved. Differential scanning calorimetry was used to investigate the curing reaction and its kinetics, and the glass transition of DGEBA/OAPS. Thermogravimetric analysis was used to investigate thermal decomposition of the two kinds of epoxy resins. The reactions between amino groups and epoxy groups were investigated using Fourier transform infrared spectroscopy. Scanning electron microscopy was used to observe morphology of the two epoxy resins. The results indicated that OAPS had very good compatibility with DGEBA in molecular level, and could form a transparent DGEBA/OAPS resin. The curing reaction of the DGEBA/OAPS prepolymer could occur under low temperatures compared with DGEBA/DDS. The DGEBA/OAPS resin didn’t exhibit glass transition, but the DGEBA/DDS did, which meant that the large cage structure of OAPS limited the motion of chains between the cross-linking points. Measurements of the contact angle indicated that the DGEBA/OAPS showed larger angles with water than the DGEBA/DDS resin. Thermogravimetric analysis indicated that the incorporation of OAPS into epoxy system resulted in low mass loss rate and high char yield, but its initial decomposition temperature seemed to be lowered.  相似文献   

20.
Tryptophan, an amino acid, has been used as a novel, environmentally friendly curing agent instead of toxic curing agents to crosslink the diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The curing reaction of tryptophan/DGEBA mixtures of different ratios and the effect of the imidazole catalyst on the reaction have been evaluated. The optimum reaction ratio of DGEBA to tryptophan has been determined to be 3:1 with 1 wt % catalyst, and the curing mechanism of the novel reaction system has been studied and elucidated. In situ Fourier transform infrared spectra indicate that with the extraction of a hydrogen from NH3+ in zwitterions from tryptophan, the formed nucleophilic primary amine and carboxylate anions of the tryptophan can readily participate in the ring‐opening reaction with epoxy. The secondary amine, formed from the primary amine, can further participate in the ring‐opening reaction with epoxy and form the crosslinked network. The crosslinked structure exhibits a reasonably high glass‐transition temperature and thermal stability. A catalyst‐initiated chain reaction mechanism is proposed for the curing reaction of the epoxy with zwitterion amino acid hardeners. The replacement of toxic curing agents with this novel, environmentally friendly curing agent is an important step toward a next‐generation green electronics industry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 181–190, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号