首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
A numerical study was performed to evaluate the effectiveness of the novel sister hole film cooling technique. Two secondary coolant holes bound the primary coolant hole slightly downstream of its midpoint, intended to minimize the primary vortex pair and improve cooling performance. An unstructured hexahedral mesh was generated and the realizable kε turbulence model with near-wall modeling was used in these simulations. Blowing ratios of 0.2, 0.5, 1.0, and 1.5 were simulated to evaluate the applicability of sister holes in practical applications. It was found that sister holes significantly improved cooling performance over the entire computational domain, particularly at high blowing ratios. These results arose by countering the primary vortex pair with a secondary pair from these sister holes, ultimately maintaining flow adhesion where the coolant stream would have otherwise separated.  相似文献   

2.
 The film cooling performance on a convex surface subjected to zero and favourable pressure gradient free-stream flow was investigated. Adiabatic film cooling effectiveness values were obtained for five different injection geometries, three with cylindrical holes and two with shaped holes. Heat transfer coefficients were derived for selected injection configurations. CO2 was used as coolant to simulate density ratios between coolant and free-stream close to gas turbine engine conditions. The film cooling effectiveness results indicate a strong dependency on the free-stream Mach number level. Results obtained at the higher free-stream Mach number show for cylindrical holes generally and for shaped holes at moderate blowing rates significant higher film cooling effectiveness values compared to the lower free-stream Mach number data. Free-stream acceleration generally reduced adiabatic film cooling effectiveness relative to constant free-stream flow conditions. The different free-stream conditions investigated indicate no significant effects on the corresponding heat transfer increase due to film injection. The determined heat flux ratios or film cooling performance indicated that coolant injection with shaped film cooling holes is much more efficient than with cylindrical holes especially at higher blowing rates. Heat flux penalties can occur at high blowing rates when using cylindrical holes. Received on 29 May 2000  相似文献   

3.
Two-phase CFD calculations, using a Lagrangian model and commercial code Fluent 6.2.16, were employed to calculate the gas and droplet flows and film cooling effectiveness with and without mist on a flat plate. Two different three dimensional geometries are generated and the effects of the geometrical shape, size of droplets, mist concentration in the coolant flow and temperature of mainstream flow for different blowing ratios are studied. A cylindrical and laterally diffused hole with a streamwise angle of 30° and spanwise angle of 0° are used. The diameter of film cooling (d) hole, and the hole length to diameter ratio (L/d) for both of geometries are 10 mm and 4, respectively. Also the blowing ratio ranges from 1.0 to 2.0, and the mainstream Reynolds number based on the mainstream velocity and hole diameter (Re d) is 6,219. The results are shown for different droplets diameters (1–10 μm), concentrations (1–5%) and mainstream temperatures (350–500 K). The centreline effectiveness and distribution of effectiveness on the surface of cooling wall are presented.  相似文献   

4.
We present a mathematical model for multicomponent gas transport in an anisotropic fuel cell electrode.The model couples the Maxwell–Stefan equations for multicomponent diffusion along with Darcy's law for flow in a porous medium. The equations are discretized using a finite volume approach with the method of lines, and the resulting non‐linear system of differential equations is integrated in time using a stiff ODE solver. Numerical simulations are performed to validate the model and to investigate the effect of various parameters on fuel cell performance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
An experimental study on the efficiency of transpiration cooling in hypersonic laminar and turbulent flow regimes is carried out in the Hypersonic Windtunnel Cologne with a focus on the aerothermal problems downstream of the cooled model part. The model is made of a material of low thermal conductivity (PEEK) with an integrated probe of a porous material. The experimental setup allows the direct comparison of the thermal behavior of transpiration cooling to a well-defined and radiatively cooled reference surface. Experiments are performed at Mach number of 6 and two different Reynolds numbers. Air, argon and helium are used as coolants at various flow rates, in order to identify the influence of coolant medium on cooling efficiency. The cooling efficiency of air and argon is comparable. Helium provides significantly higher cooling efficiency at the same blowing ratio, i.e. same coolant mass flow rate. The experimental data shows that the efficiency of the transpiration cooling in turbulent flows is much lower than in laminar flow.  相似文献   

6.
The effect of film cooling on the aerodynamic performance of turbine blades is becoming increasingly important as the gas turbine operating temperature is being increased in order to increase the performance. The current paper investigates the effect of blowing ratio on the aerodynamic losses of a symmetric airfoil by pressure measurements and Particle Image Velocimetry (PIV). The test model features 4 rows of holes located on the suction side at 5%, 10%, 15% and 50% of the chord length. The Reynolds number based on the airfoil chord is 1.2 × 105. Experiments are performed by varying the location of air injection, the angle of attack, and the mainstream velocity. The coolant air is injected at ambient temperature and the blowing ratio is varied from 0 to 1.91. It is observed that the losses due to film cooling increase with blowing ratio of 0 to 0.48, and the wake is shifted towards the suction side. Conversely, the aerodynamic losses decrease when the blowing ratio is increased further from 0.64 to 1.91. This trend has been observed for all the experimental configurations. The effect of blowing ratio on flow separation is investigated with the time-averaged velocity fields obtained from PIV measurements. It is observed that low blowing ratios, the separation point shifts upstream and at high blowing ratios the ejected coolant energizes the flow and delays separation. The pressure field around the airfoil is reconstructed from the integration of the Poisson equation based on the PIV velocity fields. The experimental results can be used for validation of numerical models for predicting losses due to film cooling.  相似文献   

7.
Three-dimensional mean velocity and concentration fields have been measured for a water flow in a pressure side cutback trailing edge film cooling geometry consisting of rectangular film cooling slots separated by tapered lands. Three-component mean velocities were measured with conventional magnetic resonance velocimetry, while time-averaged concentration distributions were measured with a magnetic resonance concentration technique for flow at two Reynolds numbers (Re) differing by a factor of 2, three blowing ratios, and with and without an internal pin fin array in the coolant feed channel. The results show that the flows are essentially independent of Re for the regime tested in terms of the film cooling surface effectiveness, normalized velocity profiles, and normalized mean streamwise vorticity. Blowing ratio changes had a larger effect, with higher blowing ratios resulting in surface effectiveness improvements at downstream locations. The addition of a pin fin array within the slot feed channel made the spanwise distribution of coolant at the surface more uniform. Results are compared with transonic experiments in air at realistic density ratios described by Holloway et al. (2002a).  相似文献   

8.
D. Rochette 《Shock Waves》2007,17(1-2):103-112
The paper deals with the numerical method of the compressible gas flow through a porous filter emphasizing the treatment of the interface between a pure gaseous phase and a solid phase. An incident shock wave is initiated in the gaseous phase interacting with a porous filter inducing a transmitted and a reflected wave. To take into account the discontinuity jump in the porosity between the gaseous phase and the porous filter, an approximate Riemann solver is used to compute homogeneous non-conservative Euler equations in porous media using ideal gas state law. The discretization of this problem is based on a finite volume method where the fluxes are evaluated by a “volumes finis Roe” (VFRoe) scheme. A stationary solution is determined with a continuous variable porosity in order to test the numerical scheme. Numerical results are compared with the two-phase shock tube experiments and simulations of a shock wave attenuation and gas filtration in porous filters are presented.   相似文献   

9.
In previous studies, the moment‐of‐fluid interface reconstruction method showed dramatic accuracy improvements in static and pure advection tests over existing methods, but this did not translate into an equivalent improvement in volume‐tracked multimaterial incompressible flow simulation using low‐order finite elements. In this work, the combined effects of the spatial discretization and interface reconstruction in flow simulation are examined. The mixed finite element pairs, Q1Q0 (with pressure stabilization) and Q2P ? 1 are compared. Material order‐dependent and material order‐independent first and second‐order accurate interface reconstruction methods are used. The Q2P ? 1 elements show significant improvements in computed flow solution accuracy for single material flows but show reduced convergence using element‐average piecewise constant density and viscosity in volume‐tracked simulations. In general, a refined Q1Q0 grid, with better material interface resolution, provided an accuracy similar to the Q2P ? 1 element grid with a comparable number of degrees of freedom. Moment‐of‐fluid shows more benefit from the higher‐order accurate flow simulation than the LVIRA, Youngs', and power diagram interface reconstruction methods, especially on unstructured grids, but does not recover the dramatic accuracy improvements it has shown in advection tests. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

10.
Heat transfer characteristics in the laminar boundary layer with transpiration cooling function are numerically analyzed by an integral method. The effects of coolant injection ratio, and the Re and Pr numbers of the exterior hot flow on the temperature at porous plate surface are discussed. The numerical results and discussions indicate that the surface temperature falls with an increase of coolant injection ratio, the temperature distribution on the surface is not uniform, and the effects of the Re number under lower Pr number condition are distinctly different to that under the higher Pr number condition.  相似文献   

11.
Film cooling effectiveness from trenched shaped and compound holes   总被引:3,自引:0,他引:3  
This paper presents a comparative-numerical investigation on film cooling from a row of simple and compound-angle holes injected at 35° on a flat plate with four film cooling configurations: (1) cylindrical film hole; (2) 15° forward diffused film hole; (3) trenched cylindrical film hole; (4) trenched 15° forward-diffused film hole. All simulations are at fixed density ratio of 1.6, blowing ratio of 1.25, length-to-diameter L/D = 4 and pitch-to-diameter ratio of 3.0. The effect of length-to-diameter ratio on film cooling has been also investigated using L/D in the range of 1–8. Computational solutions of the steady, Reynolds-averaged Navier–Stokes equations have been obtained using a finite volume method. It has been found that the shape of the hole and the trenched holes can significantly affect the film cooling flow over the protected surface. Further, it has been shown that the film cooling effectiveness by trenched shaped holes is higher than all other configurations both in spanwise and streamwise specially downstream of the injection. Also, a trenched compound angle injection shaped hole produces much higher film cooling protection than the other configurations investigated in the present paper. The length-to-diameter ratio of trenched holes was found to have a significant effect on film cooling effectiveness and the spread of the coolant jets.  相似文献   

12.
Negatively buoyant jets consist in a dense fluid injected vertically upward into a lighter ambient fluid. The numerical simulation of this kind of buoyancy‐driven flows is challenging as it involves multiple fluids with different physical properties. In the case of immiscible fluids, it requires, in addition, to track the motion of the interface between fluids and accurately represent the discontinuities of the flow variables. In this paper, we investigate numerically the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid using the Particle Finite Element Method and compare the two‐dimensional numerical results with experiments on the injection of a jet of dyed water through a nozzle in the base of a cylindrical tank containing rapeseed oil. In both simulations and experiments, the fountain inlet flow velocity and nozzle diameter have been varied to cover a wide range of Froude Fr and Reynolds Re numbers ( 0.1 < Fr < 30, 8 < Re < 1350), reproducing both weak and strong laminar fountains. The flow behaviors observed for the different numerical simulations fit in the regime map based on the Re and Fr values of the experiments, and the maximum fountain height is in good agreement with the experimental observations, suggesting that particle finite element method is a useful tool for the study of immiscible two‐fluid systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper addresses two important issues relevant to efficiency measurements in film-cooled annular cascades: the definition of the ideal flow to be used in loss calculation, and the measurements that are necessary for such loss calculation. The paper also addresses the question of the correct parameterisation of coolant density effects, showing that the momentum flux ratio, rather than the blowing rate, is the most appropriate parameter. Experiments examining the effect of extensive aerofoil surface film cooling on the aerodynamic efficiency of an annular cascade of transonic nozzle guide vanes are reported. A dense foreign gas (SF6/Ar mixture) is used to simulate engine representative coolant-to-mainstream density ratios, momentum ratios and blowing rates under ambient temperature conditions. Experiments are also conducted with air coolant to study the effect of density ratio on efficiency. The flowfield measurements have been obtained using a four-hole pyramid probe in a short duration blowdown facility which correctly models engine Reynolds and Mach numbers. This work compares the measured aerodynamic efficiencies of uncooled vanes with those which employ an extensive amount of cooling. The engine-representative cooling geometry investigated features 14 rows of cylindrical cooling holes, and a second geometry where 8 of these rows are replaced by holes having a fan-shaped exit. The effects of adding trailing edge slot ejection are also presented. By selectively blocking rows of holes, the cumulative effect on the mid-span efficiency of adding rows of cooling holes has also been determined. Experimental results are presented as area traverse maps (total pressure, isentropic Mach number and flow angles), from which the relative changes in efficiency due to film cooling have been calculated. These calculations reveal that the presence of foreign-gas coolant from the cylindrical-hole geometry increases the aerodynamic loss (relative to the uncooled baseline) by 6.7%; and coolant from the fan-shaped holes increases the loss by 15%. The effects of different assumptions for the coolant total pressure are shown to significantly change the measured loss; if the loss measurements are based on the mainstream total pressure, rather than the total pressure in the coolant cavity, the respective increase in loss (relative to the uncooled baseline) of cylindrical and fan-shaped holes is 4.5% and 12.5%. Experimental data is compared with loss predictions using a Hartsel model. Received: 4 December 1998/Accepted: 1 September 1999  相似文献   

14.
A numerical method for the simulation of compressible two‐phase flows is presented in this paper. The sharp‐interface approach consists of several components: a discontinuous Galerkin solver for compressible fluid flow, a level‐set tracking algorithm to follow the movement of the interface and a coupling of both by a ghost‐fluid approach with use of a local Riemann solver at the interface. There are several novel techniques used: the discontinuous Galerkin scheme allows locally a subcell resolution to enhance the interface resolution and an interior finite volume Total Variation Diminishing (TVD) approximation at the interface. The level‐set equation is solved by the same discontinuous Galerkin scheme. To obtain a very good approximation of the interface curvature, the accuracy of the level‐set field is improved and smoothed by an additional PNPM‐reconstruction. The capabilities of the method for the simulation of compressible two‐phase flow are demonstrated for a droplet at equilibrium, an oscillating ellipsoidal droplet, and a shock‐droplet interaction problem at Mach 3. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
We consider the numerical simulation of a three‐dimensional two‐phase incompressible flow with a viscous interface. The simulation is based on a sharp interface Navier–Stokes model and the Boussinesq–Scriven constitutive law for the interface viscous stress tensor. In the recent paper [Soft Matter 7, 7797–7804, 2011], a model problem with a spherical droplet in a Stokes Poiseuille flow with a Boussinesq–Scriven law for the surface viscosity has been analyzed. In that paper, relations for the droplet migration velocity are derived. We relate the results obtained with our numerical solver for the two‐phase Navier–Stokes model to these theoretical relations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
There have been a few recent numerical implementations of the stress‐jump condition at the interface of conjugate flows, which couple the governing equations for flows in the porous and homogenous fluid domains. These previous demonstration cases were for two‐dimensional, planar flows with simple geometries, for example, flow over a porous layer or flow through a porous plug. The present study implements the interfacial stress‐jump condition for a non‐planar flow with three velocity components, which is more realistic in terms of practical flow applications. The steady, laminar, Newtonian flow in a stirred micro‐bioreactor with a porous scaffold inside was investigated. It is shown how to implement the interfacial jump condition on the radial, axial, and swirling velocity components. To avoid a full three‐dimensional simulation, the flow is assumed to be independent of the azimuthal direction, which makes it an axisymmetric flow with a swirling velocity. The present interface treatment is suitable for non‐flat surfaces, which is achieved by applying the finite volume method based on body‐fitted and multi‐block grids. The numerical simulations show that a vortex breakdown bubble, attached to the free surface, occurs above a certain Reynolds number. The presence of the porous scaffold delays the onset of vortex breakdown and confines it to a region above the scaffold. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Conjunctive modelling of free/porous flows provides a powerful and cost‐effective tool for designing industrial filters used in the process industry and also for quantifying surface–subsurface flow interactions, which play a significant role in urban flooding mechanisms resulting from sea‐level rise and climate changes. A number of well‐established schemes are available in the literature for simulation of such regimes; however, three‐dimensional (3D) modelling of such flow systems still presents numerical and practical challenges. This paper presents the development of a fully 3D, transient finite element model for the prediction and quantitative analyses of the hydrodynamic behaviour encountered in industrial filtrations and environmental flows represented by coupled flows. The weak‐variational formulation in this model is based on the use of C0 continuous equal‐order Lagrange polynomial functions for velocity and pressure fields represented by 3D hexahedral finite elements. A mixed UVWP finite element scheme based on the standard Galerkin technique satisfying the Ladyzhenskaya–Babuska–Brezzi stability criterion through incorporation of an artificial compressibility term in the continuity equation has been employed for the solution of coupled partial differential equations. We prove that the discretization generates unified stabilization for both the Navier–Stokes and Darcy equations and preserves the geometrical flexibility of the computational grids. A direct node‐linking procedure involving the rearrangement of the global stiffness matrix for the interface elements has been developed by the authors, which is utilized to couple the governing equations in a single model. A variety of numerical tests are conducted, indicating that the model is capable of yielding theoretically expected and accurate results for free, porous and coupled free/porous problems encountered in industrial and environmental engineering problems representing complex filtration (dead‐end and cross‐flow) and interacting surface–subsurface flows. The model is computationally cost‐effective, robust, reliable and easily implementable for practical design of filtration equipments, investigation of land use for water resource availability and assessment of the impacts of climatic variations on environmental catastrophes (i.e. coastal and urban floods). The model developed in this work results from the extension of a multi‐disciplinary project (AEROFIL) primarily sponsored by the European aerospace industries for development of a computer simulation package (Aircraft Cartridge Filter Analysis Modelling Program), which was successfully utilized and deployed for designing hydraulic dead‐end filters used in Airbus A380.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a stabilized extended finite element method (XFEM) based fluid formulation to embed arbitrary fluid patches into a fixed background fluid mesh. The new approach is highly beneficial when it comes to computational grid generation for complex domains, as it allows locally increased resolutions independent from size and structure of the background mesh. Motivating applications for such a domain decomposition technique are complex fluid‐structure interaction problems, where an additional boundary layer mesh is used to accurately capture the flow around the structure. The objective of this work is to provide an accurate and robust XFEM‐based coupling for low‐ as well as high‐Reynolds‐number flows. Our formulation is built from the following essential ingredients: Coupling conditions on the embedded interface are imposed weakly using Nitsche's method supported by extra terms to guarantee mass conservation and to control the convective mass transport across the interface for transient viscous‐dominated and convection‐dominated flows. Residual‐based fluid stabilizations in the interior of the fluid subdomains and accompanying face‐oriented fluid and ghost‐penalty stabilizations in the interface zone stabilize the formulation in the entire fluid domain. A detailed numerical study of our stabilized embedded fluid formulation, including an investigation of variants of Nitsche's method for viscous flows, shows optimal error convergence for viscous‐dominated and convection‐dominated flow problems independent of the interface position. Challenging two‐dimensional and three‐dimensional numerical examples highlight the robustness of our approach in all flow regimes: benchmark computations for laminar flow around a cylinder, a turbulent driven cavity flow at Re = 10000 and the flow interacting with a three‐dimensional flexible wall. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The lattice‐Boltzmann (LB) method, derived from lattice gas automata, is a relatively new technique for studying transport problems. The LB method is investigated for its accuracy to study fluid dynamics and dispersion problems. Two problems of relevance to flow and dispersion in porous media are addressed: (i) Poiseuille flow between parallel plates (which is analogous to flow in pore throats in two‐dimensional porous networks), and (ii) flow through an expansion–contraction geometry (which is analogous to flow in pore bodies in two‐dimensional porous networks). The results obtained from the LB simulations are compared with analytical solutions when available, and with solutions obtained from a finite element code (FIDAP) when analytical results are not available. Excellent agreement is found between the LB results and the analytical/FIDAP solutions in most cases, indicating the utility of the lattice‐Boltzmann method for solving fluid dynamics and dispersion problems. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Using a hybrid Lagrangian-Eulerian approach, a level set function–based immersed interface method (LS-IIM) is proposed for the interaction of a flexible body immersed in a fluid flow. The LS-IIM involves finite volume method for the fluid solver, Galerkin finite element method for the structural solver, and a block-iterative partitioned method–based fully implicit coupling between the two solvers. The novelty of the proposed method is a level set function–based direct implementation of fluid-solid interface boundary conditions in both the solvers. Another novelty is the computation of the level set function from a geometric method instead of differential equations commonly used in level set methods—the novel geometric as compared to the traditional method is found to be more accurate and less time-consuming. The LS-IIM is demonstrated as second-order accurate. Verification study is presented first separately for both the solvers and then together for four fluid-structure interaction (FSI) problems, with different levels of complexity including lid-driven flow, channel flow, and free-stream flow. Benchmark solutions are presented for two class of FSI problems: first, easy to set up and less time-consuming and, second, a reasonably challenging and complex FSI problem involving sharp edges and forced-motion of the flexible structure. The benchmark solutions are proposed at steady state for the first problem, after a verification study with two open-source solvers and, at periodic state, after a validation with published experimental results for the second problem. Our benchmark solutions may be useful for verification study in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号