首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
A novel integral imaging-based three-dimensional (3D) digital watermarking scheme is presented. In the proposed method, an elemental image array (EIA) obtained by recording the rays coming from a 3D object through a pinhole array in the integral imaging system is employed as a new 3D watermark. The EIA is composed of a number of small elemental images having their own perspectives of a 3D object, and from this recorded EIA various depth-dependent 3D object images can be reconstructed by using the computational integral imaging reconstruction (CIIR) technique. This 3D property of the EIA watermark can make a robust reconstruction of the watermark image available even though there are some data losses in the embedded watermark by attacks. To show the robustness of the proposed scheme against attacks, some experiments are carried out and the results are discussed.  相似文献   

2.
A new watermarking algorithm based on genetic algorithm (GA) in the transform domain is proposed. Unlike the existing computer-generated integral imaging based watermarking methods, the proposed method utilizes GA searching to the optimized transform domain to serve as a trade-off for watermark embedding. In this paper, 3D scene to be captured by using a virtual pinhole array and be computationally recorded as an elemental image array (EIA), watermarking with GA optimization and computer-generated holography is implemented. In the proposed GA optimization process, we utilize the fitness function to improve the visual quality of watermarked images and the robustness. Simulation results show that the proposed algorithm yields a holographic watermark that is imperceptibility to human eyes and robust to standard watermarking attacks. A comparison of the proposed watermarking method to the existing similar watermarking methods demonstrated that the proposed method generally outperforms completing methods in terms of imperceptibility and robustness.  相似文献   

3.
In this paper, we propose an occlusion removal technique for improved recognition of 3D objects that are partially occluded in computational integral imaging (CII). In the reconstruction process of a 3D object which is partially occluded by other objects, occlusion degrades the resolution of reconstructed 3D images and thus this affects negatively the recognition of a 3D object in CII. To overcome this problem, we introduce a method to eliminate occluding objects in elemental image array (EIA) and the proposed method is applied to 3D object recognition by use of CII. To our best knowledge, this is the first time to remove occlusion in CII. In our method, we apply the elemental image to sub-image (ES) transform to EIA obtained by a pickup process and those sub-images are employed for occlusion removal. After the transformation, we correlate those sub-images with a reference sub-image to locate occluding objects and then we eliminate the objects. The inverse ES transform provides a modified EIA. Actually, the modified EIA is considered to be an EIA without the object that occludes the object to be reconstructed. This can provide a substantial gain in terms of the image quality of 3D objects and in terms of recognition performance. To verify the usefulness of the proposed technique, some experimental results are carried out and the results are presented.  相似文献   

4.
袁胜  王真  周昕  邴丕彬 《光子学报》2020,49(2):179-187
提出了一种基于二值化计算鬼成像的盲水印方法.首先将水印图像经计算关联成像加密系统加密,并将加密数据二值化,然后将其隐藏到宿主图像的离散余弦变换域,实现水印信息的嵌入.水印信息的提取和重建是隐藏和加密的逆过程,分别借助提取密钥和解密密钥获取水印信息.仿真实验证明,该方法具有很好的隐蔽性,在嵌入因子α=10时,嵌入水印仍具有较好的不可感知性,含水印图像的峰值信噪比在38 dB以上;另外,该方法也具有一定的容错能力,提取的加密数据错误率达20%时,重建的水印信息仍能分辨和识别;与传统的计算鬼成像相比,加密数据的二值化为水印嵌入提供了方便,但是并未对重建图像带来严重恶化,其相关系数相差不足0.1;水印信息的提取无需借助原始宿主图像,是一种盲提取方法.  相似文献   

5.
A novel three-dimensional (3D) image encryption approach by using the computer-generated integral imaging and cellular automata transform (CAT) is proposed, in which, the two-dimensional (2D) elemental image array (EIA) digitally recorded by light rays coming from the 3D image is mapped inversely through the virtual pinhole array according to the ray-tracing theory. Next, the encrypted image is generated by using the 2D CAT scrambling transform for the 2D EIA. The reconstructed process is carried out by using the modified computational integral-imaging reconstruction (CIIR) technique; the depth-dependent plane images are reconstructed on the output plane. The reconstructed 3D image quality of the proposed scheme can be greatly improved, because the proposed encryption scheme carries out in a computer which can avoid the light diffraction caused by optical device CIIR, and solves blur problem caused by CIIR by using the pixel-averaging algorithm. Furthermore, the CAT-based encryption algorithm is an error-free encryption method; CAT as an orthogonal transformation offers considerable simplicity in the calculation of the transform coefficient, that is, it can improve the quality of the reconstructed image by reducing energy loss compared with the traditional complicated transform process. To show the effectiveness of the proposed scheme, we perform computational experiments. Experimental results show that the proposed scheme outperforms conventional encryption methods.  相似文献   

6.
In this paper, we propose a novel approach to enhance the recognition performance of a far and partially occluded three-dimensional (3-D) target in computational curving-effective integral imaging by using the direct pixel-mapping (DPM) method. With this scheme, the elemental image array (EIA) originally picked up from a far and partially occluded 3-D target can be converted into a new EIA just like the one virtually picked up from a target located close to the lenslet array. Due to this characteristic of DPM, resolution and quality of the reconstructed target image can be highly enhanced, which results in a significant improvement of recognition performance of a far 3-D object. In addition, the computational time required for reconstruction of a far 3-D target could be also reduced because the distance between the lenslet array and image plane is virtually shortened in the new EIA transformed by DPM. Experimental results reveal that image quality of the reconstructed target image and object recognition performance of the proposed system have been improved by 1.75 dB and 4.56% on the average in PSNR (peak-to-peak signal-to-noise ratio) and NCC (normalized correlation coefficient), respectively, compared to the conventional system.  相似文献   

7.
Quantum watermarking technology protects copyright by embedding invisible quantum signal in quantum multimedia data. In this paper, a watermarking scheme based on INEQR was presented. Firstly, the watermark image is extended to achieve the requirement of embedding carrier image. Secondly, the swap and XOR operation is used on the processed pixels. Since there is only one bit per pixel, XOR operation can achieve the effect of simple encryption. Thirdly, both the watermark image extraction and embedding operations are described, where the key image, swap operation and LSB algorithm are used. When the embedding is made, the binary image key is changed. It means that the watermark has been embedded. Of course, if the watermark image is extracted, the key’s state need detected. When key’s state is |1〉, this extraction operation is carried out. Finally, for validation of the proposed scheme, both the Signal-to-noise ratio (PSNR) and the security of the scheme are analyzed.  相似文献   

8.
基于SIFT图像特征区域的全息水印技术   总被引:1,自引:0,他引:1  
为了增强水印的不可见性和鲁棒性,提出了一种基于图像特征区域的水印算法。首先利用SIFT(Scale Invariant Feature Transform)算法从载体图像蓝色B通道中提取图像特征点来进行优化和筛选,根据优化后的稳定特征点及其特征尺度确定图像的特征区域,再结合全息技术,对原始水印图像进行双随机相位加密,生成加密全息水印;然后对特征区域进行离散余弦变换(DCT);最后在其中频区域嵌入加密全息水印。在提取水印时无须借助原始图像,是盲水印技术。实验结果表明:该算法重建的水印图像与原始水印图像的NC值高达0.95;水印的嵌入对图像质量影响很小,PSNR值高达55.97,能够抵抗常规信号攻击及缩放、剪切、平移等几何攻击。  相似文献   

9.
Hao Luo  Zheng-Liang Huang 《Optik》2011,122(4):311-316
This paper proposes a blind watermarking scheme based on discrete fractional random transform. The watermark information can be a binary sequence, a gray level image or a set of decimal fractions sampled from a given source signal. The host image is subsampled into four subimages, and the high correlations among their discrete fractional random transform coefficients are exploited for watermark embedding. Based on this self-reference strategy, the watermark can be extracted without the aid of the host image. As a fragile watermarking technique, our scheme can be used in tamper detection. Besides, it can be used in self-embedding for a large payload is provided. Meanwhile, security of the watermark is preserved due to the randomness of the discrete fractional random transform. Experimental results demonstrate the effectiveness of our scheme.  相似文献   

10.
祁永坤  彭翔  关颖健  高志  孟祥锋  秦琬 《光学学报》2008,28(s2):308-313
提出一种基于相息图和小波变换的数字水印方案。利用迭代相位恢复算法将水印图像编码为相息图, 然后将经权重因子调制后的相息图嵌入到宿主图像的三层小波低频系数中, 完成整个水印嵌入过程。在水印提取阶段, 对宿主图像和含水印图像进行三层小波分解, 将得到的低频系数对应相减提取出水印相息图, 然后对此相息图进行傅里叶变换操作, 取其振幅即可提取原始嵌入的水印图像。针对不同权重因子的水印系统, 详细分析和讨论了所提出水印方案的隐蔽性和稳健性。计算机仿真结果验证了该数字水印方案的可行性。  相似文献   

11.
In this paper, a dual watermarking scheme based on discrete wavelet transform (DWT), wavelet packet transform (WPT) with best tree, and singular value decomposition (SVD) is proposed. In our algorithm, the cover image is sub-sampled into four sub-images and then two sub-images, having the highest sum of singular values are selected. Two different gray scale images are embedded in the selected sub-images. For embedding first watermark, one of the selected sub-image is decomposed via WPT. The entropy based algorithm is adopted to find the best tree of WPT. Watermark is embedded in all frequency sub-bands of the best tree. For embedding second watermark, l-level discrete wavelet transform (DWT) is performed on the second selected sub-image. The watermark is embedded by modifying the singular values of the transformed image. To enhance the security of the scheme, Zig-Zag scan in applied on the second watermark before embedding. The robustness of the proposed scheme is demonstrated through a series of attack simulations. Experimental results demonstrate that the proposed scheme has good perceptual invisibility and is also robust against various image processing operations, geometric attacks and JPEG Compression.  相似文献   

12.

Quantum watermarking technology protects copyright by embedding an invisible quantum signal in quantum multimedia data. This paper proposes a two-bit superposition method which embeds a watermark image (or secret information) into a carrier image. Firstly, the bit-plane is used to encrypt the watermark image. At the same time, the quantum expansion method is used to extend the watermark image to the same size with the carrier image, and then the image is encrypted through the Fibonacci scramble method again. Secondly, the first proposed method is the two bits of the watermark image which is embedded into the carrier image in accordance with the order of the high and lowest qubit, and the second proposed method which is the high bit of the watermark image is embedded to the lowest bit. Then the lowest bit of the watermark image is embedded in carrier image. Third, the watermark image is extracted through 1-CNOT and swap gates, and the watermark image is restored by inverse Fibonacci scramble, inverse expansion method and inverse bit-plane scramble method. Finally, for the validation of the proposed scheme, the signal-to-noise ratio (PSNR), the image histogram and the robustness of the two watermarking methods are analyzed.

  相似文献   

13.
In this paper, a state-coding based blind watermarking algorithm is proposed to embed color image watermark to color host image. The technique of state coding, which makes the state code of data set be equal to the hiding watermark information, is introduced in this paper. When embedding watermark, using Integer Wavelet Transform (IWT) and the rules of state coding, these components, R, G and B, of color image watermark are embedded to these components, Y, Cr and Cb, of color host image. Moreover, the rules of state coding are also used to extract watermark from the watermarked image without resorting to the original watermark or original host image. Experimental results show that the proposed watermarking algorithm cannot only meet the demand on invisibility and robustness of the watermark, but also have well performance compared with other proposed methods considered in this work.  相似文献   

14.
This paper presents a spatial domain quantum watermarking scheme. For a quantum watermarking scheme, a feasible quantum circuit is a key to achieve it. This paper gives a feasible quantum circuit for the presented scheme. In order to give the quantum circuit, a new quantum multi-control rotation gate, which can be achieved with quantum basic gates, is designed. With this quantum circuit, our scheme can arbitrarily control the embedding position of watermark images on carrier images with the aid of auxiliary qubits. Besides reversely acting the given quantum circuit, the paper gives another watermark extracting algorithm based on quantum measurements. Moreover, this paper also gives a new quantum image scrambling method and its quantum circuit. Differ from other quantum watermarking schemes, all given quantum circuits can be implemented with basic quantum gates. Moreover, the scheme is a spatial domain watermarking scheme, and is not based on any transform algorithm on quantum images. Meanwhile, it can make sure the watermark be secure even though the watermark has been found. With the given quantum circuit, this paper implements simulation experiments for the presented scheme. The experimental result shows that the scheme does well in the visual quality and the embedding capacity.  相似文献   

15.
In this paper we applied differential evolution (DE) algorithm to balance the tradeoff between robustness and imperceptibility by exploring multiple scaling factors in image watermarking. First of all, the original image is partitioned into blocks and the blocks are transformed into Discrete Cosine Transform (DCT) domain. The DC coefficients from each block are collected to construct a low-resolution approximation image and apply Singular Value Decomposition (SVD) on this approximation image. After that watermark is embedded by modifying singular values with the singular values of the watermark. The role of DE algorithm is to identify the best multiple scaling factors for embedding process in order to achieve the best performance in terms of robustness without compromising with the quality of the image. To enhance the security, watermark is scrambled by Arnold transform before embedding. Experimental results show that the proposed scheme maintains a satisfactory image quality and watermark can still be identified from a seriously distorted image.  相似文献   

16.
彭翔  白伟东  田劲东 《光学学报》2007,27(6):011-1017
提出一种新的基于信息光学的数字水印方法。该方法将水印信息隐藏于半色调编码的计算全息图之中。通过相位复原技术将需隐藏的水印信息编码为相位函数嵌入在复波前中,其振幅定义为宿主图像,通过计算全息记录复波前并对全息图进行半色调编码完成水印信息的嵌入。水印的提取过程只需对含有水印信息的半色调图像进行光学或数字的傅里叶变换即可完成。并给出了算法有效性的理论分析和仿真实验结果。结果证明这种水印技术对于各种数字图像处理操作具有很高的稳健性,且半色调编码图的二值特性使嵌入水印具有很强的抗打印、抗复印、抗扫描的能力。  相似文献   

17.
In this paper, a novel robust watermarking technique using particle swarm optimization and k-nearest neighbor algorithm is introduced to protect the intellectual property rights of color images in the spatial domain. In the embedding process, the color image is separated into non-overlapping blocks and each bit of the binary watermark is embedded into the individual blocks. Then, in order to extract the embedded watermark, features are obtained from watermark embedded blocks using the symmetric cross-shape kernel. These features are used to generate two centroids belonging to each binary (1 and 0) value of the watermark implementing particle swarm optimization. Subsequently, the embedded watermark is extracted by evaluating these centroids utilizing k-nearest neighbor algorithm. According to the test results, embedded watermark is extracted successfully even if the watermarked image is exposed to various image processing attacks.  相似文献   

18.
A novel adaptive watermarking algorithm in discrete wavelet transform (DWT) based on quantization index modulation (QIM) technique is presented. The host image is decomposed into wavelet subbands, and then the approximation subband is divided into non-overlapping small embedding blocks. The secret watermark bit is embedded into singular value vector of each embedding block by applying QIM. To improve the invisibility and robustness of watermarking system, the quantization step for each embedding block is set by combining statistical model with particle swarm optimization (PSO) algorithm. The experimental results show that the proposed algorithm not only preserves the high perceptual quality, but also effectively stands against joint photographic experts group (JPEG) compression, low-pass filtering, noise addition, scaling, and cropping attacks, etc. The comparison analysis demonstrates that our scheme has better performance than the previously reported watermarking algorithms.  相似文献   

19.
A robust watermarking algorithm based on salient image features   总被引:3,自引:0,他引:3  
A feature-based robust watermarking algorithm against geometric attacks is proposed in this paper. It is well-known that geometric attacks such as rotation, scaling, and translation on a watermarked image will destroy the synchronization between the processes of watermark embedding and detection. In other words, the locations for embedding the watermark are lost due to geometric attacks, which results in the failure of watermark detection. Since salient features in an image are relatively stable under geometric attacks, they may serve as reference points to synchronize the embedding and detection processes and the detection rate of the watermark could be increased significantly. Another problem for feature-based watermarking is that the repeatability of feature detection tends to be low; that is, the features detected during the embedding process may not be detected again during the detection process. To overcome such a problem, a novel feature enhancement technique is developed to increase the repeatability rate of feature detection, in which image moments are used to achieve geometric invariance between the embedding and detection processes. Experimental results demonstrate that the proposed watermarking algorithm is able to survive various geometric attacks and common image processing operations. And the visual quality of the watermarked image is well preserved as well.  相似文献   

20.
To take invisibility and restoration quality into account, this paper proposes an alterable-capacity watermarking scheme. For each block of size 8 × 8 pixels, the alterable-length code is generated based on the roughness of it. The alterable-length watermark generated by the alterable-length code is divided into three parts and embedded in other three blocks based on the secret key. The authenticity of each block is determined by comparing the watermark reconstructed by the block content and the corresponding extracted watermark. To improve the quality of recovered images, two copies of the significant-code of each block are embedded in different blocks and the image inpainting method is adopted to recover the tampered blocks whose significant-code embedded in other blocks is destroyed. The alterable-payload watermark preserves adequate information of image blocks especially for texture images with as few bits as possible and takes into account invisibility, security and restoration quality. Experimental results demonstrate that the proposed scheme improves the quality of watermarked and reconstructed images and is resilient to the known forgery attacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号