首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Alkanolamide (ALK) and Aminopropyltriethoxy Silane (APTES) were incorporated separately into silica-filled SMR-L compounds at 1.0, 3.0, 5.0 and 7.0 phr. It was found that compounds with both ALK and APTES exhibited cure enhancement, better filler dispersion and greater rubber-filler interaction. Both additives also produced modulus and tensile enhancements in the silica-filled SMR-L compounds, especially up to a 5.0 phr loading. At a similar loading, ALK exhibited higher reinforcing efficiency of silica than APTES.  相似文献   

2.
The effect of Alkanolamide (ALK) loading on properties on three different types of carbon black (CB)-filled rubbers (SMR-L, ENR-25, and SBR) was investigated. The ALK loadings were 1.0, 3.0, 5.0 and 7.0 phr. It was found that ALK gave cure enhancement, better filler dispersion and greater rubber–filler interaction. ALK also enhanced modulus, hardness, resilience and tensile strength, especially up to 5.0 phr of loading in SMR-L and SBR compounds, and at 1.0 phr in ENR-25 compound. Scanning electron microscopy (SEM) proved that each optimum ALK loading exhibited the greatest matrix tearing line and surface roughness due to better rubber - filler interaction.  相似文献   

3.
The interaction between precipitated silica and chloroprene rubber (CR) was investigated using a nuclear magnetic resonance (NMR) technique. The results reveal that the silanol groups on silica surface could chemically react with CR. Crosslinking of CR is therefore possible in the presence of silica at high temperature. The effects of silica and ethylene thiourea (ETU) loadings on properties of the silica-filled CR were thereafter investigated. With increasing silica loading, the compound viscosity increases considerably due to the dilution effect. As silica could act as a curative for CR, increasing silica loading results in both faster cure rate and increased crosslink density. The optimum tensile strength is found at approximately 30 phr of silica loading. The results also show that silica loading has little effect on most aging properties, except the relative modulus in which it increases rapidly with increasing silica loading due to the post curing effect. Similar to the effect of silica loading, the compound viscosity, cure rate and crosslink density are all increased with increasing ETU loading. The tensile strength is, on the other hand, slightly affected by ETU loading. Exception is found at high loading where the tensile strength drops noticeably. Interestingly, aging resistance of the vulcanizate is found to improve with the addition of ETU. Explanation is given by the hindrance capability of ETU to post curing.  相似文献   

4.

In the present research, mechanical and thermal properties of high-density polyethylene/wood flour were improved by incorporating nanoclay (Cloisite 30B) and antioxidant (Irganox B225) in the compound. Design of experiments was carried out to optimize composition among nine compounds and to investigate the effect of nanoclay and antioxidant (0–5 phr) and (0–0.4 phr), respectively. The results of mechanical tests showed approximately 24% increase in the tensile strength of compounds containing 2.5 and 5.0 part per hundred (phr) of the nanoclay in the composite compared with the same samples without nanoclay. The tensile modulus of composites increased 7.3% by increasing the level of nanoclay from 0 to 2.5 phr. However, a further increase in the nanoclay content led to a 4.3% decrease in tensile modulus. Evaluation of the thermal oxidation stability of samples confirmed that the thermal oxidation of composites decreased with increasing nanoclay from 0 to 5.0 phr and increased significantly with the addition of the antioxidant.

  相似文献   

5.
The main objective of the present study was to investigate the synergistic effect of simultaneous use of two reinforcing fillers in rubber compounds based on acrylonitrile-butadiene copolymer (NBR). Silica was used as reinforcing filler in all samples and the loading content was 25 phr. 3 and 5 phr of multiwall carbon nanotubes (MWCNT) were used as second reinforcing filler in NBR/silica compounds. Melt mixing method was employed for compound preparation. The effects of carbon nanotube/silica hybrid filler on mechanical and vulcanization characteristics of the rubber compounds were investigated. These results revealed that addition of the reinforcing filler, either carbon nanotube or silica, shortened the optimum cure time (t90) and also scorch time (ts1) of samples compared to that of pure NBR compound. In hybrid compounds, the reduction in optimum cure time and scorch time was higher than that of for silica-filled NBR or CNT-filled NBR compounds. This can be attributed to the synergistic effect between CNT and silica as two reinforcing agents in NBR compounds. Regardless the composition of the reinforcing filler, an increase of the relaxed storage modulus is observed, while the tan δ value is decreased steadily. The dynamic modulus reinforcement of nanocomposites was examined by the Guth Gold and Modified Guth Gold equations. For hybrid samples, the experimental values show a significant positive deviation from model predictions. According to the Barlow’s formula, hybrid compounds show higher burst strength compared to silica or CNT filled NBR compounds.  相似文献   

6.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

7.
Commercially, the alteration of a rubber formulation is usually made in such a way as to keep the hardness of the rubber product constant. This is because a specific hardness of the rubber product sets the limit to its practical applications. Therefore, in this paper, natural rubber (NR) vulcanizates containing various fillers were prepared to have the same hardness level, and their mechanical properties were compared and related to the degree of filler dispersion. The results show that higher amounts of carbon black (CB) and silica are needed for CB- and silica-filled natural rubber vulcanizates to achieve the same hardness value as a NR vulcanizate containing 6 phr of montmorillonite clay. At equal loading of fillers, clay-filled vulcanizate exhibits higher modulus, hardness, tensile strength and compression set, but lower heat build-up resistance and crack growth resistance than those of the vulcanizates containing conventional fillers. For the vulcanizate having the same hardness value, CB-filled vulcanizate gives the better overall mechanical properties followed by the clay-filled and silica-filled vulcanizates, respectively. The explanation is given as the better dispersion of carbon black, as can be seen in the SEM micrograph.  相似文献   

8.
The effects of the partial replacement of silica or calcium carbonate (CaCO3) by bentonite (Bt) on the curing behaviour, tensile and dynamic mechanical properties and morphological characteristics of ethylene propylene diene monomer (EPDM) composites were studied. EPDM/silica/Bt and EPDM/CaCO3/Bt composites containing five different EPDM/filler/Bt loadings (i.e., 100/30/0, 100/25/5, 100/15/15, 100/5/25 and 100/0/30 parts per hundred rubber (phr)) were prepared using a laboratory scale two-roll mill. Results show that the optimum cure (t90) and scorch (tS2) time decreased, while the cure rate index (CRI) increased for both composites with increasing Bt loading. The tensile properties of EPDM/CaCO3/Bt composites increased with the replacement of CaCO3 by Bt from 0 to 30 phr of Bt. For EPDM/silica/Bt composites, the maximum tensile strength and Eb were obtained at a Bt loading of 15 phr, with enhanced tensile modulus on further increase of Bt loading. The dynamic mechanical studies revealed a strong rubber-filler interaction with increasing Bt loading in both composites, which is manifested by the lowering of tan δ at the glass transition temperature (Tg) for EPDM/CaCO3/Bt composites and tan δ at 40 °C for EPDM/silica/Bt composites. Scanning electron microscopy (SEM) micrographs proved that incorporation of 15 phr Bt improves the dispersion of silica and enhances the interaction between silica and the EPDM matrix.  相似文献   

9.
Blends of natural rubber/virgin ethylene-propylene-diene-monomer (NR/EPDM) and natural rubber/recycled ethylene-propylene-diene-monomer (NR/R-EPDM) were prepared. A fixed amount of carbon black (30 phr) was also incorporated. The effect of the blend ratio (90/10, 80/20, 70/30, 60/40 and 50/50 (phr/phr)) on the compounding, mechanical and morphological properties of carbon-black-filled NR/EPDM and NR/R-EPDM blends was studied. The results indicated that both the carbon-black-filled NR/EPDM and NR/R-EPDM blends exhibited a decrease in tensile strength and elongation at break for increasing weight ratio of EPDM or R-EPDM. The maximum torque (S′MH), minimum torque (S′ML), torque difference (S′MH?ML), scorch time (ts2) and cure time (tc90) of carbon-black-filled NR/EPDM or NR/R-EPDM blends increased with increasing weight ratio of virgin EPDM or R-EPDM in the blend. SEM micrographs proved that, for low weight ratios of virgin EPDM or R-EPDM, the blends exhibited high surface roughness and matrix tearing lines. The blends also showed a reduction in crack path with increasing virgin EPDM or R-EPDM content over 30 phr. This reduction in crack path could lead to less resistance to crack propagation and, therefore, low tensile strength.  相似文献   

10.
Various amounts of predispersed multi-wall carbon nanotubes (MWCNT) were mixed with natural rubber (NR), with and without carbon black (CB), for preparing MWCNT-filled NR (NC) and MWCNT/CB-filled NR (NH) vulcanizates. All NH vulcanizates contained 30 phr CB and the amount of MWCNT for both NC and NH was varied from 0 to 8 phr. Helium ion microscopy (HIM) and FE-SEM images showed that MWCNT in the NH was dispersed much better than in the NC. Additionally, the well dispersed CB and MWCNT in the NH functioned synergistically in promoting an increase in longitudinal crack growth, leading to enhancement of edge-cut tensile strength (CTS) with increasing MWCNT loading. In contrast, all NC specimens ruptured in a simple lateral direction relating to their lower CTS. Results also revealed that abrasion resistance of the NH was not significantly changed with increasing MWCNT, whereas that of the NC increased. Nevertheless, abrasion resistance of both vulcanizates showed good correlation with the average value of ridge spacing on their abraded surfaces. It was also found that tensile strength of the NH was almost unchanged when the MWCNT loading was increased because the reinforcement by CB predominates over the MWCNT. However, 100% modulus and hardness of both NC and NH increased with increasing MWCNT content.  相似文献   

11.
Since silica has strong filler–filler interactions and adsorbs polar materials, a silica-filled rubber compound wil have poor dispersion of the filler and a poor cure characteristic. Improvement of properties of silica-filled styrene-butadiene rubber (SBR) compounds has been studied using emulsion SBR-based acrylonitrile-styrene-butadiene rubber (NSBR). The silica dispersion is improved by adding NSBR to the compound. The bound rubber content increases with increase in the NSBR content. The scorch time and cure rate become faster as the NSBR content increases. The crosslink density also increases by increasing the NSBR content. The wear property is improved by adding the NSBR. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Film formation of poly(vinyl chloride) resin (rPVC) coating on natural rubber (NR) surface in solid state was prepared and investigated. The mixtures of rPVC with NR were compressed at 170 °C for 15 min and found that the rPVC was migrated and coated on the NR surface which was proved by the images from Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM). The coated NR films with rPVC loading 5 and 10 phr are stronger and higher dielectric constant than uncoated NR film. Very high loading of rPVC for 50 and 100 phr result in decreasing of tensile strength and dielectric constant.  相似文献   

13.
In situ silica reinforcement of natural rubber (NR) grafted with methyl methacrylate (MMA) (MMA-GNR) was achieved via the sol–gel reaction of tetraethoxysilane (TEOS) by the use of solid rubber and latex solutions. Silica contents within the MMA-GNR as high as 48 and 19 phr were obtained when using the solid rubber and latex solutions, respectively, under optimum conditions. The conversion efficiency of TEOS to silica was close to 95%. The in situ formed silica MMA-GNR/NR composite vulcanizates were prepared. MMA-GNR/NR composite vulcanizates reinforced with the in situ formed silica prepared by either method had similar mechanical properties to each other, but a shorter cure time and higher mechanical properties than those reinforced with the commercial silica at 9 phr. The TEM micrographs confirmed that the in situ formed silica particles were well dispersed within the MMA-GNR/NR composite matrix, whilst the commercial silica particles showed a significant level of agglomeration and a lower level of dispersion.  相似文献   

14.
50/50 NR/NBR blends with various MWCNT loadings were prepared by mixing with MWCNT/NR masterbatches on a two-roll mill and sheeted off at the smallest nip gap. Then, the effect of milling direction, machine direction (MD) and transverse direction (TD), on the mechanical and electrical properties of the blends was elucidated. Dichroic ratio and SEM results confirmed that most of the MWCNTs were aligned along MD when MWCNT was less than 4 phr, and the number of agglomerates increased when MWCNT was more than 4 phr. Additionally, anisotropic properties were clearly observed when 4 phr MWCNT was loaded. At 4 phr MWCNT, 100% modulus and tensile strength in the MD were about 1.5 and 1.3 times higher than those in the TD, respectively. Moreover, electrical conductivity in the MD was superior to that in the TD by about 3 orders of magnitude. Results from dynamic mechanical tests also showed that the maximum tan δ in the MD sample was lower than that in the corresponding TD sample. In addition, the storage modulus at 30 °C for the MD sample containing 4 phr MWCNT was 1.15 higher than that of the corresponding TD sample. This stronger reinforcement efficiency resulted from the combination of the greater alignment and dispersion of most MWCNTs in the MD sample.  相似文献   

15.
75/25 (wt %) NR/BR blend/clay nanocomposites were prepared via a combined latex/melt intercalation method, for the first time. At first, NR latex was mixed with various amounts of the aqueous sodium montmorillomte (Na-MMT) dispersion. Obtained mixtures were co-coagulated by dilute solution of the sulfuric acid, washed several times with the distilled water and dried under vacuum. The NR/ clay compounds were then mixed with given amounts of the BR and vulcanizing ingredients in a 6-inch two-roll mill and then vulcanized at 150°C in a hot press. The nanocomposites have better mechanical properties than the clay-free NR/BR blend vulcanizates. Furthermore, modulus and hardness (Shore A) increased by increase of the clay loading in the range of 0–15 phr while tensile strength and elongation at break increased with increasing the clay content up to 5 phr and then decreased gradually by further increase of the clay loading. It was concluded from results of the XRD and mechanical test that nanocomposites containing less than 10 phr clay may show the fully exfoliated structure. With increasing the clay content to 10 and 15 phr, both non-exfoliated (stacked layers) and exfoliated structures may be observed simultaneously in the nanocomposites. TGA results indicated an improvement in main and end decomposition by increasing the clay loading.  相似文献   

16.
The loading effect of precipitated silica (PSi) and fly ash‐based silica (FASi) on mechanical properties of natural rubber/chloroprene (NR/CR) under thermal and thermal‐oil ageing was investigated with variation in NR content in the NR/CR blends. The selected results were compared with vulcanized NR/nitrile rubber (NR/NBR) blends. The cure time of CR vulcanizate was found to decrease with increasing NR content, but increased with silica fillers. The Mooney viscosity for CR vulcanizates reduced with increasing NR content. The addition of NR had no effect on tensile modulus and tensile strength for the FASi filled NR/CR, but the opposite trend was observed for the PSi filled NR/CR. The post‐curing effect was more significant in PSi filled NR/CR than in FASi filled NR/CR. The tensile strength of the NR/CR vulcanizates was slightly reduced after thermal ageing especially at high NR content, more extreme reduction being found by thermal‐oil ageing. The elongation at break of NR/CR with both silica fillers ranged from 400 to 900%. The hardness results were similar to the tensile modulus. The addition of PSi in NR/CR considerably increased the tear strength, but less pronounced effect was found for FASi. The resilience properties of NR/CR tended to decrease with increasing silica content. The compression set became poorer when NR content was increased. The PSi showed higher improvement in compression set than the FASi. The effects of silica and ageing on the mechanical properties for NR/CR vulcanizates were similar to those for NR/NBR vulcanizates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This research presents the effects of oxygen pressure and ambient temperatures on the crack behavior of O-rings from a semi-EV of NR/EPDM rubber with silica/CB filler, exposed to the inlet flow and outflow oxygen pressure in a Solid Oxide Fuel Cell (SOFC) environment. Blends of NR/EPDM were prepared with various ratios of silica/CB filler at 00/60, 10/50, 20/40, 30/30, 40/20, 50/10, and 60/00 phr. The fabricated O-ring complied with the standard for O-rings (TIS 2728-2559), with a minimum hardness of 65–75 Shore A, minimum tensile strength of 9 MPa, minimum elongation at break of 200%, and a minimum 100% modulus of 2.7 MPa. The mechanical properties of the compounds were tested, and the appropriate compound was chosen to make the O-rings to test in SOFC. The crack morphology of the fabricated O-rings was investigated and compared with a commercial O-ring after testing in the SOFC. As a result, the compound with silica/CB of 40:20 ratio provided the optimum mechanical properties, and passed the criteria standard of TIS 2728-2559. The mechanical properties of the prepared and commercial O-rings were similar (P-value of commercial with 60/00 = 0.273, 50/10 = 0.273, 40/20 = 0.144, 30/30 = 0.465, 20/40 = 0.465, 10/50 = 1.000 and 00/60 = 0.273; all > 0.05) and and both could still be continued to be used in SOFC despite some inner cracks after 24 h. The price of the prepared O-ring is cheaper than the commercial O-rings due to the low price of NR used in its formulation. Therefore, a prepared O-ring can be used in a SOFC, or other applications due to their mechanical properties and their reasonable price.  相似文献   

18.
An investigation in the interactions between silica and elastomers used in the production of tyre treads was carried out. To achieve some knowledge on the interactions between reinforcing agent and elastomers, which are fundamental in determining the rubber reinforcement, inverse gas chromatography (IGC) at infinite dilution was used to evaluate surface properties of both unmodified and modified silica and to calculate the adsorption free energy and enthalpy of low molecular weight analogues of elastomers. The predictions derived from the thermodynamic study were compared with some of the results obtained by a morphological analysis of silica-filled compounds carried out by transmission electron microscopy (TEM) and automated image analysis (AIA).  相似文献   

19.
The carbon–silica dual phase filler (CSDPF) was modified by bis (3‐triethoxy‐silylpropyl) tetrasulphane (Si69) and 1‐allyl‐3‐methyl‐imidazolium chloride (AMI), respectively. The natural rubber (NR) vulcanizates filled with modified CSDPF were fabricated through mechanical mixing followed by a high‐temperature cure process. The impacts of filler surface modification on the curing characters, crosslinked junctions, network structure, and mechanical properties of NR vulcanizates were investigated. The results showed that the Si69 interacted with CSDPF through covalent bond, while the interaction between AMI and CSDPF was hydrogen bond. Both modifications increased the cure rate of CSDPF/NR compounds as well as the crosslinked degree, compared with those of pristine CSDPF/NR compound. The modifications improved the dispersion of CSDPF in NR matrix. The covalent modification by Si69 caused a limited movement of NR chains in the CSDPF surface, which contributed to a greater tensile modulus of Si69‐modified CSDPF/NR. However, the higher content of mono‐sulfidic crosslink and the poorer content of strain‐induced crystallization in the NR matrix led to a slight increase of tensile strength and tear strength of Si69‐modified CSDPF/NR, compared with those of CSDPF/NR. The tensile modulus of AMI‐modified CSDPF/NR had a lower value due to a faster polymer chain motion on the CSDPF surface. However, the tensile and tear strength of AMI‐modified CSDPF/NR increased significantly because of the increase of mono‐sulfidic crosslink, strain‐induced crystallization, and the existed hydrogen bond between CSDPF and NR. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Oil palm ash (OPA) is available in abundance and is renewable. The effects of a combination of OPA and 3-aminopropyltrimethoxysilane on the properties of styrene butadiene rubber (SBR) compounds based on their mixing ratios were studied using response surface methodology. The cure characteristics and tensile properties were selected as the responses. The significance of these factors and their interactions were analysed using ANOVA. The results showed that the presence of OPA and AMPTES had a significant effect on the properties of SBR compounds, whereby all the responses had R2 of above 0.9. This indicates that the regression model is accurate in describing and predicting the pattern of significance for each factor studied. In addition, with the highest level of AMPTES (6 phr) and OPA (80 phr) in the SBR, the tensile strength of the mixture was significantly improved by 151.6% compared to that of gum SBR compound. These findings were further supported by scanning electron microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号