首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted poly(butylene succinate adipate) (PBSA-g-AA) and agricultural residues (rice husk, RH) were evaluated. Composites containing acrylic acid-grafted PBSA (PBSA-g-AA/RH) exhibited noticeably superior mechanical properties compared with those of PBSA/RH due to greater compatibility with RH. The dispersion of RH in the PBSA-g-AA matrix was highly homogeneous as a result of ester formation, and the consequent creation of branched and cross-linked macromolecules, between the carboxyl groups of PBSA-g-AA and hydroxyl groups in RH. Each composite was subject to biodegradation tests in an Azospirillum brasilense BCRC 12270 liquid culture medium. The bacterium completely degraded both the PBSA and the PBSA-g-AA/RH composite films. Morphological observations indicated severe disruption of the film structure after 20-40 days of incubation. The PBSA-g-AA/RH (20 wt%) films were not only more biodegradable than those made of PBSA but also exhibited lower molecular weight and intrinsic viscosity, implying a strong connection between these characteristics and biodegradability.  相似文献   

2.
The aims of this study were to develop composite films based on potato starch and cellulose modified with toluenediisocyanate, to investigate their morphology and structure, and to evaluate their behavior to enzymatic hydrolysis and their potential use to manufacture of biodegradable seedling pots. The effects of modified cellulosic fibers upon mechanical properties and biodegradability of composite materials based on starch matrix were investigated by tensile strength tests, Fourier infrared spectroscopy, X‐ray diffraction, and dynamic vapor sorption. The behavior of the films to enzymatic hydrolysis with amylase and cellulase was studied; the kinetic of enzymatic hydrolysis and characterization of materials are reported. Chemical modification of cellulose improves tensile strength with about 47%, and decreases the biodegradability of composites making them more resistant to microbial attack, thus prolonging their shelf life. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The feasibility of obtaining resistant starch type III (RS3) from malanga flour (Xanthosoma sagittifolium), as an unconventional source of starch, was evaluated using the hydrothermal treatment of autoclaving. The physicochemical characterization of RS3 made from malanga flour was carried out through the evaluation of the chemical composition, color attributes, and thermal properties. In addition, the contents of the total starch, available starch, resistant starch, and retrograded resistant starch were determined by in vitro enzymatic tests. A commercial corn starch sample was used to produce RS3 and utilized to compare all of the analyses. The results showed that native malanga flour behaved differently in most of the evaluations performed, compared to the commercial corn starch. These results could be explained by the presence of minor components that could interfere with the physicochemical and functional properties of the flour; however, the RS3 samples obtained from malanga flour and corn starch were similar in their thermal and morphological features, which may be related to their similarities in the content and molecular weight of amylose, in both of the samples. Furthermore, the yields for obtaining the autoclaved powders from corn starch and malanga flour were similar (≈89%), which showed that the malanga flour is an attractive raw material for obtaining RS3 with adequate yields, to be considered in the subsequent research.  相似文献   

4.
The approach used consists of a flow injection (FI) manifold assisted by a focused microwave digestor for both fast washing of free sugars and acceleration of the hydrolysis step prior to the determination of starch in food. The action of microwaves reduces both the times for removal of free sugars to a 5 min single washing cycle with ethanol/water and that of the subsequent starch hydrolysis to a 10 min step. The sugars formed in the starch hydrolysis are in-line derivatised and photometrically monitored at λ=460 nm. In this way, automation of pre-treatment and determination is achieved with the minimum of both cost and time. The precision of the overall method, expressed as relative standard deviation, is 3.75% and the total analysis time is 38 min. Comparison of the results, obtained in applying the method to flour and bread, is in agreement with those provided by the manual method.  相似文献   

5.
Summary A cost-effective approach to monitoring and maintaining reliability of analytical procedures is by the incorporation of appropriate, compositionally similar reference materials into the scheme of analysis. Agricultural and food commodities represent an extremely wide range of composition, in respect of the sought-for analyte and the supporting material (matrix), not fully reflected in currently available biological reference materials (BRM's). With the view to attempting to fill some of the gaps in the world repertoire of reference materials and to have suitable products for our laboratories' use, preparation has been completed of twelve candidate agricultural reference materials. These products, representing a number of food classes, include bovine muscle powder, hard red spring wheat flour, soft winter wheat flour, durum wheat flour, wheat gluten, corn bran, corn starch, potato starch, whole egg powder, whole milk powder, microcrystalline cellulose, and sugar. Preparative steps included, as required, freeze drying, grinding or ball milling, X-ray sterilization, sieving, blending and packaging to yield sizeable quantities of each material in finely powdered form. Cooperative analytical effort is expected to lead to characterization in respect of concentrations of a number of nutritionally, toxicologically and environmentally-pertinent, major, minor, and trace chemical elements. These materials will then be available for analytical chemical data quality control for inorganic constituents in a range of agricultural commodities.
Herstellung von zwölf als landwirtschaftliche Referenzmaterialien vorgeschlagenen Substanzen

Contribution No. 88-49 from Land Resource Research Centre  相似文献   

6.
1-n-Butyl-3-methylimidazolium dimethyl phosphate (BMIM DMP) was identified as the most suitable ionic liquid as solvent for the headspace gas chromatographic analysis of solvents with very low vapor pressure such as dimethylsulfoxide, N-methylpyrrolidone, sulfolane, tetralin, and ethylene glycol in a realistic matrix of commonly used excipients (carboxymethylcellulose, magnesium stearate, guar flour, and corn starch) in pharmaceutical products. Limits of quantification and limits of detection were in the low microgram per gram range. The detection of traces of sulfolane in a real sample of tablets containing the drug cefpodoxim proxetil demonstrated the applicability of the method.  相似文献   

7.
Amylases constitute one of the most important groups of industrial enzymes, presenting several applications, such as in the food, textile, and ethanol manufacturing. In this work, a starchy residue from the Brazilian agroindustry, namely babassu cake, was used for the production of amylases by solid-state fermentation and for obtaining sugar hydrolysates, which can be used as building blocks for future bioconversions. Eight filamentous fungi from the genera Aspergillus and Penicillium were screened. Regarding amylase production, A. awamori strains showed well-balanced endoamylase and exoamylase activities, while A. wentii produced an amylolytic complex much richer in the endo-acting enzymes. Simultaneous liquefaction and saccharification using the crude enzyme extracts from the four most promising fungal strains was then investigated applying DOE techniques. The highest total reducing sugar content (24.70 g L?1) was obtained by the crude extract from A. awamori IOC-3914, corresponding to a hydrolysis yield of 52% of total starch in the cake, while A. awamori IOC-3915 produced the most appropriate extract in terms of glucose release (maximum of 5.52 g L?1). Multivariate analysis of the DOE studies indicated that these extracts showed their best performance at 50–57 °C under acid conditions (pH 3.6–4.5), but were also able to act satisfactorily under milder conditions (36 °C and pH 5.0), when TRS and glucose released were about 65% of the maximum values obtained. These data confirm the high potential of the enzyme extracts under study for cold hydrolysis of starch.  相似文献   

8.
Research concentrated on the biodegradable capability of PCL blends with various types of starch in an anaerobic aqueous environment of mesophilic sludge from a municipal wastewater treatment plant. For blend preparation, use was made of a native starch Meritena from maize, another from Waxy – a genetically modified type of maize, as well as Gel Instant, a gelatinized starch, and an amaranth starch. Additional PCL/starch blends were prepared from the same starch types, but these were initially plasticized with glycerol. The biodegradability tests were supplemented with thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC); morphology was identified using scanning electron microscopy (SEM), plus mechanical properties were also tested. While mixtures of PCL with starches plasticized with glycerol exhibited improved mechanical properties and a higher degree of biodegradation in the anaerobic environment, mixtures of PCL with pure forms of starch were ascertained as rather resistant to the anaerobic aqueous environment. TGA and DSC analysis confirmed the removal of starch and glycerol from the PCL matrix. SEM then proved these results through the absence of starch grains in the samples following anaerobic biodegradation.  相似文献   

9.
Summary There is a need for food based reference materials characterized for organic nutrient content, since very few are presently available. A series of twelve food matrices has been prepared by Agriculture Canada as Candidate Reference Materials. This paper reports a survey of the organic nutrient content of these twelve materials which include bovine muscle powder, corn starch, hard red spring wheat flour, soft winter wheat flour, white granulated sugar, whole milk powder, wheat gluten, potato starch, corn bran, durum wheat flour, whole egg powder, and microcrystalline cellulose. Whole egg, bovine muscle and whole milk powder appear to be best suited for further development as organic nutrient standards.
Überblick über ausgewählte Materialien zur Verwendung als Standards für organische Nährstoffe

Contribution Number 88-65 from Land Resource Research Center  相似文献   

10.
The effect of heat treatment below the gelatinization temperature on the susceptibility of corn, mung bean, sago, and potato starches towards granular starch hydrolysis (35°C) was investigated. Starches were hydrolyzed in granular state and after heat treatment (50°C for 30 min) by using granular starch hydrolyzing enzyme for 24 h. Hydrolyzed heat-treated starches showed a significant increase in the percentage of dextrose equivalent compared to native starches, respectively, with corn 53% to 56%, mung bean 36% to 47%, sago 15% to 26%, and potato 12% to 15%. Scanning electron microscopy micrographs showed the presence of more porous granules and surface erosion in heat-treated starch compared to native starch. X-ray analysis showed no changes but with sharper peaks for all the starches, suggested that hydrolysis occurred on the amorphous region. The amylose content and swelling power of heat-treated starches was markedly altered after hydrolysis. Evidently, this enzyme was able to hydrolyze granular starches and heat treatment before hydrolysis significantly increased the degree of hydrolysis.  相似文献   

11.
Three pretreated corn stover (ammonia fiber expansion, dilute acid, and dilute alkali) were used as carbon source to culture Trichoderma reesei Rut C-30 for cellulase and xylanase production. The results indicated that the cultures on ammonia fiber expansion and alkali pretreated corn stover had better enzyme production than the acid pretreated ones. The consequent enzymatic hydrolysis was performed applying fungal enzymes on pretreated corn stover samples. Tukey’s statistical comparisons exhibited that there were significant differences on enzymatic hydrolysis among different combination of fungal enzymes and pretreated corn stover. The higher sugar yields were achieved by the enzymatic hydrolysis of dilute alkali pretreated corn stover.  相似文献   

12.
In this study, poly(lactic acid) (PLA)/starch blends were prepared through reactive melt blending by using PLA and starch as raw materials and vegetable oil polyols, polyethylene glycol (PEG), and citric acid (CA) as additives. The effects of CA and PEG on the toughness of PLA/starch blends were analyzed using a mechanical performance test, scanning electron microscope analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy, X-ray diffraction, rheological analysis, and hydrophilicity test. Results showed that the elongation at break and impact strength of the PLA/premixed starch (PSt)/PEG/CA blend were 140.51% and 3.56 kJ·m−2, which were 13.4 and 1.8 times higher than those of pure PLA, respectively. The essence of the improvement in the toughness of the PLA/PSt/PEG/CA blend was the esterification reaction among CA, PEG, and starch. During the melt-blending process, the CA with abundant carboxyl groups reacted in the amorphous region of the starch. The shape and crystal form of the starch did not change, but the surface activity of the starch improved and consequently increased the adhesion between starch and PLA. As a plasticizer for PLA and starch, PEG effectively enhanced the mobility of the molecular chains. After PEG was dispersed, it participated in the esterification reaction of CA and starch at the interface and formed a branched/crosslinked copolymer that was embedded in the interface of PLA and starch. This copolymer further improved the compatibility of the PLA/starch blends. PEGs with small molecules and CA were used as compatibilizers to reduce the effect on PLA biodegradability. The esterification reaction on the starch surface improved the compatibilization and toughness of the PLA/starch blend materials and broadens their application prospects in the fields of medicine and high-fill packaging.  相似文献   

13.
Corn fiber is the fibrous by-product of wet-mill corn processing. It typically consists of about 20% starch, 14% cellulose, and 30% hemicellulose in the form of arabinoxylan. Crude corn fiber (CCF) was fractionated into de-starched corn fiber (DSCF), corn fiber with cellulose (CFC) enriched, and corn fiber arabinoxylan (CFAX), and these fractions were evaluated as substrates for enzyme production by Trichoderma reesei. T. reesei QM9414 and Rut C-30 grew on CCF, DSCF, CFC, or CFAX and secreted a number of hydrolytic enzymes. The enzymes displayed synergism with commercial cellulases for corn fiber hydrolysis. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

14.
Malted and un-malted sorghum (Sorghum bicolor (L.) Moench) flour was gamma irradiated with a dose of 10 kGy and then re-irradiated with 25 kGy. The effects of irradiation on microbial decontamination, amylase activity, fermentability (using an amylolytic L. plantarum MNC 21 strain), starch granule structure and viscosity were determined. Standard methods were used during determinations. The 10 kGy dose had no effect on microbial load of un-malted flour but reduced that of malted flour by 3 log cycles. Re-irradiation resulted in complete decontamination. Irradiation of malt caused a significant (p<0.05) reduction in alpha and beta amylase activity (22% and 32%, respectively). Irradiation of un-malted flour increased the rates of utilization of glucose and maltose by 53% and 100%, respectively, during fermentation. However, microbial growth, rate of lactic acid production, final lactic acid concentration and pH were not affected. Starch granules appeared normal externally even after re-irradiation, however, granules ruptured and dissolved easily after hydration and gelatinization. Production of high dry matter density porridge (200 g dry matter/L) with a viscosity of 3500 cP was achieved by irradiation of un-malted flout at 10 kGy. Gamma irradiation can be used to decontaminate flours and could be utilized to produce weaning porridge from sorghum.  相似文献   

15.
The microbial pretreatment of corn stover and corn stover silage was achieved via the solid-state cultivation of Phanerochaete chrysosporium; pretreatment effects on the biodegradability and subsequent anaerobic production of biogas were investigated. The peak levels of daily biogas production and CH4 yield from corn stover silage were approximately twice that of corn stover. Results suggested that ensiling was a potential pretreatment method to stimulate biogas production from corn stover. Surface morphology and Fourier-transform infrared spectroscopy analyses demonstrated that the microbial pretreatment of corn stover silage improved biogas production by 10.5 to 19.7 % and CH4 yield by 11.7 to 21.2 % because pretreatment could decrease dry mass loss (14.2 %) and increase substrate biodegradability (19.9 % cellulose, 32.4 % hemicellulose, and 22.6 % lignin). By contrast, the higher dry mass loss in corn stover (55.3 %) after microbial pretreatment was accompanied by 54.7 % cellulose, 64.0 % hemicellulose, and 61.1 % lignin degradation but did not significantly influence biogas production.  相似文献   

16.
The degradation activities of bacterium, Roseateles depolymerans TB-87 and its depolymerases Est-H and Est-L against aliphatic as well as aliphatic–aromatic co-polyesters, were investigated. Strain TB-87 and its enzymes exhibited an ability to degrade aliphatic and aliphatic–aromatic co-polyesters. Monomers produced as a result of degradation of aliphatic polyesters [poly(butylene succinate) (PBS), poly(butylene succinate-co-adipate) (PBSA)] as well as aliphatic–aromatic co-polyester [poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL) by depolymerases Est-H and Est-L were investigated by liquid chromatography mass-spectrometry (LC-MS). Some common monomers like succinic acid and 1,4-butanediol were detected besides adipic acid and terephthalic/isophthalic acids as degradation products from PBSA and PBSTIL, respectively, whereas lactic acid was not detected. The succinic acid monomer was detected prior to adipic acid as a result of degradation of PBSA. The enzymes depolymerized PBS also into respective monomers. The analysis of PBSTIL degradation products revealed that enzymes easily degraded aliphatic segments as compared to aromatic segments and resulted in production of succinic acid prior to terephthalic and isophthalic acid. On the basis of these results, we speculate that both the enzymes Est-H and Est-L, attacked succinic acid segments (BS) first instead of adipic acid (BA) and terephthalic/isophthalic acid (BT or BI) segments of PBSA and PBSTIL, respectively. It is concluded from the results that R. depolymerans strain TB-87 can depolymerize aliphatic as well as aliphatic–aromatic co-polyesters; therefore, its enzymes can be applied in the process of biochemical monomer recycling.  相似文献   

17.
In this paper, green composites of the corn starch were developed by using resorcinol-formaldehyde (Rf) as the cross-linking agent and reinforced with graft copolymers Saccharaum spontaneum L(Ss) and methyl methacrylates (MMA) as principal monomer and its binary mixture with acrylamide (AAm), acrylonitrile(AN), acrylic acid (AA) prepared under micro-wave. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. There was improvement in physico-chemical and mechanical properties of composite were found to exhibit better than matrix. Ss-g-poly(MMA)-MW reinforced composites were found to exhibit better tensile strength, on the other hand Ss-g-poly(MMA + AA)-MW reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR studies and scanning electron microscopic (SEM) techniques.  相似文献   

18.
In this article the thermal and thermomechanical properties of neat poly[(butylene succinate)-co-adipate] (PBSA) and its nanocomposite are reported. Nanocomposite of PBSA with organically modified synthetic fluorine mica (OSFM) has been prepared by melt-mixing in a batch mixer. The structure of nanocomposite is characterized by X-ray diffraction patterns and transmission electron microscopic (TEM) observations that reveal homogeneous dispersion of intercalated silicate layers in the PBSA matrix. The melting behavior of pure polymer and nanocomposite samples are analyzed by differential scanning calorimetry (DSC), which shows multiple melting behavior of the PBSA matrix. The multiple melting behavior of the PBSA matrix is also studied by temperature modulated DSC (TMDSC) and wide-angle XRD (WXRD) measurements. All results show that the multiple melting behavior of PBSA is due to the partial melting, re-crystallization, and re-melting phenomena. The investigation of the thermomechanical behavior is performed by dynamic mechanical thermal analysis. Results demonstrate substantial enhancement in the mechanical properties of PBS, for example, at room temperature, storage flexural modulus increased from 0.5 GPa for pure PBS to 1.2 GPa for the nanocomposite, an increase of about 120% in the value of the elastic modulus. The thermal stability of nanocomposite compared to that of neat PBSA is also examined in pyrolytic and thermo-oxidative conditions. It is then studied using kinetic analysis. It is shown that the stability of PBSA is increased moderately in the presence of OSFM.  相似文献   

19.
Cellulose/iron oxide hybrids were prepared by the controlled hydrolysis of FeC2O4 in the presence of vegetable and bacterial cellulose fibres as substrates. By varying the relative amount of FeC2O4 and NaOH, either hematite or magnetic iron oxides were grown at the cellulose fibres surfaces. This chemical strategy was used for the production of a number of materials, whose coloristic properties associated to their reinforcement role allowed their use as new hybrid pigments for thermoplastic starch (TPS) based products. The TPS reinforced materials were characterized by several techniques in order to evaluate: the morphology and the compatibility between the matrix and the fillers; the mechanical reinforcement effect of the cellulose/iron oxide pigments on TPS and the coloristic properties of the composites. All materials showed good dispersion and strong adhesion for the cellulose/iron oxide nanocomposites in the TPS matrix thus resulting in improved mechanical properties.  相似文献   

20.
Summary The development of five reference materials for major nutritional properties, whole milk powder, pork muscle, wheat and rye flour, and haricots verts beans is described. Homogeneity and stability of these materials proved to be adequate. A preliminary intercomparison of methods showed that results for total fat and total dietary fibre were method dependent. Evaluation of methods used for available carbohydrates revealed poor solubilisation and hydrolysis of starch in some laboratories. This intercomparison has given valuable information for the final certification of these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号