首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequential clustering aims at determining homogeneous and/or well-separated clusters within a given set of entities, one at a time, until no more such clusters can be found. We consider a bi-criterion sequential clustering problem in which the radius of a cluster (or maximum dissimilarity between an entity chosen as center and any other entity of the cluster) is chosen as a homogeneity criterion and the split of a cluster (or minimum dissimilarity between an entity in the cluster and one outside of it) is chosen as a separation criterion. An O(N 3) algorithm is proposed for determining radii and splits of all efficient clusters, which leads to an O(N 4) algorithm for bi-criterion sequential clustering with radius and split as criteria. This algorithm is illustrated on the well known Ruspini data set.  相似文献   

2.
The aim of this paper is to enlarge the usual domain of cluster analysis. A procedure for clustering time varying data is presented which takes into account the time dimension with its intrinsic properties.

This procedure consists of two steps. In the first step a dissimilarity between variables is defined and the dissimilarity matrix is calculated for each unit separately. In the second step the dissimilarity between units is calculated in terms of the dissimilarity matrices defined in the first step. The dissimilarity matrix obtained is the base for a suitable clustering method.

The procedure is illustrated on an empirical example.  相似文献   

3.
Fitting semiparametric clustering models to dissimilarity data   总被引:1,自引:0,他引:1  
The cluster analysis problem of partitioning a set of objects from dissimilarity data is here handled with the statistical model-based approach of fitting the “closest” classification matrix to the observed dissimilarities. A classification matrix represents a clustering structure expressed in terms of dissimilarities. In cluster analysis there is a lack of methodologies widely used to directly partition a set of objects from dissimilarity data. In real applications, a hierarchical clustering algorithm is applied on dissimilarities and subsequently a partition is chosen by visual inspection of the dendrogram. Alternatively, a “tandem analysis” is used by first applying a Multidimensional Scaling (MDS) algorithm and then by using a partitioning algorithm such as k-means applied on the dimensions specified by the MDS. However, neither the hierarchical clustering algorithms nor the tandem analysis is specifically defined to solve the statistical problem of fitting the closest partition to the observed dissimilarities. This lack of appropriate methodologies motivates this paper, in particular, the introduction and the study of three new object partitioning models for dissimilarity data, their estimation via least-squares and the introduction of three new fast algorithms.  相似文献   

4.
Estimating the number of clusters is one of the most difficult problems in cluster analysis. Most previous approaches require knowing the data matrix and may not work when only a Euclidean distance matrix is available. Other approaches also suffer from the curse of dimensionality and work poorly in high dimension. In this article, we develop a new statistic, called the GUD statistic, based on the idea of the Gap method, but use the determinant of the pooled within-group scatter matrix instead of the within-cluster sum of squared distances. Some theory is developed to show this statistic can work well when only the Euclidean distance matrix is known. More generally, this statistic can even work for any dissimilarity matrix that satisfies some properties. We also propose a modification for high-dimensional datasets, called the R-GUD statistic, which can give a robust estimation in high-dimensional settings. The simulation shows our method needs less information but is generally found to be more accurate and robust than other methods considered in the study, especially in many difficult settings.  相似文献   

5.
In this paper, a matrix modular neural network (MMNN) based on task decomposition with subspace division by adaptive affinity propagation clustering is developed to solve classification tasks. First, we propose an adaptive version to affinity propagation clustering, which is adopted to divide each class subspace into several clusters. By these divisions of class spaces, a classification problem can be decomposed into many binary classification subtasks between cluster pairs, which are much easier than the classification task in the original multi-class space. Each of these binary classification subtasks is solved by a neural network designed by a dynamic process. Then all designed network modules form a network matrix structure, which produces a matrix of outputs that will be fed to an integration machine so that a classification decision can be made. Finally, the experimental results show that our proposed MMNN system has more powerful generalization capability than the classifiers of single 3-layered perceptron and modular neural networks adopting other task decomposition techniques, and has a less training time consumption.  相似文献   

6.
Two robustness criteria are presented that are applicable to general clustering methods. Robustness and stability in cluster analysis are not only data dependent, but even cluster dependent. Robustness is in the present paper defined as a property of not only the clustering method, but also of every individual cluster in a data set. The main principles are: (a) dissimilarity measurement of an original cluster with the most similar cluster in the induced clustering obtained by adding data points, (b) the dissolution point, which is an adaptation of the breakdown point concept to single clusters, (c) isolation robustness: given a clustering method, is it possible to join, by addition of g points, arbitrarily well separated clusters?Results are derived for k-means, k-medoids (k estimated by average silhouette width), trimmed k-means, mixture models (with and without noise component, with and without estimation of the number of clusters by BIC), single and complete linkage.  相似文献   

7.
In this paper we present a new method for clustering categorical data sets named CL.E.KMODES. The proposed method is a modified k-modes algorithm that incorporates a new four-step dissimilarity measure, which is based on elements of the methodological framework of the ELECTRE I multicriteria method. The four-step dissimilarity measure introduces an alternative and more accurate way of assigning objects to clusters. In particular, it compares each object with each mode, for every attribute that they have in common, and then chooses the most appropriate mode and its corresponding cluster for that object. Seven widely used data sets are tested to verify the robustness of the proposed method in six clustering evaluation measures.  相似文献   

8.
The field of cluster analysis is primarily concerned with the partitioning of data points into different clusters so as to optimize a certain criterion. Rapid advances in technology have made it possible to address clustering problems via optimization theory. In this paper, we present a global optimization algorithm to solve the fuzzy clustering problem, where each data point is to be assigned to (possibly) several clusters, with a membership grade assigned to each data point that reflects the likelihood of the data point belonging to that cluster. The fuzzy clustering problem is formulated as a nonlinear program, for which a tight linear programming relaxation is constructed via the Reformulation-Linearization Technique (RLT) in concert with additional valid inequalities. This construct is embedded within a specialized branch-and-bound (B&B) algorithm to solve the problem to global optimality. Computational experience is reported using several standard data sets from the literature as well as using synthetically generated larger problem instances. The results validate the robustness of the proposed algorithmic procedure and exhibit its dominance over the popular fuzzy c-means algorithmic technique and the commercial global optimizer BARON.  相似文献   

9.
In data stream environment, most of the conventional clustering algorithms are not sufficiently efficient, since large volumes of data arrive in a stream and these data points unfold with time. The problem of clustering time-evolving metric data and categorical time-evolving data has separately been well explored in recent years, but the problem of clustering mixed type time-evolving data remains a challenging issue due to an awkward gap between the structure of metric and categorical attributes. In this paper, we devise a generalized framework, termed Equi-Clustream to dynamically cluster mixed type time-evolving data, which comprises three algorithms: a Hybrid Drifting Concept Detection Algorithm that detects the drifting concept between the current sliding window and previous sliding window, a Hybrid Data Labeling Algorithm that assigns an appropriate cluster label to each data vector of the current non-drifting window based on the clustering result of the previous sliding window, and a visualization algorithm that analyses the relationship between the clusters at different timestamps and also visualizes the evolving trends of the clusters. The efficacy of the proposed framework is shown by experiments on synthetic and real world datasets.  相似文献   

10.
Clustering is an important problem in data mining. It can be formulated as a nonsmooth, nonconvex optimization problem. For the most global optimization techniques this problem is challenging even in medium size data sets. In this paper, we propose an approach that allows one to apply local methods of smooth optimization to solve the clustering problems. We apply an incremental approach to generate starting points for cluster centers which enables us to deal with nonconvexity of the problem. The hyperbolic smoothing technique is applied to handle nonsmoothness of the clustering problems and to make it possible application of smooth optimization algorithms to solve them. Results of numerical experiments with eleven real-world data sets and the comparison with state-of-the-art incremental clustering algorithms demonstrate that the smooth optimization algorithms in combination with the incremental approach are powerful alternative to existing clustering algorithms.  相似文献   

11.
Many graphical methods for displaying multivariate data consist of arrangements of multiple displays of one or two variables; scatterplot matrices and parallel coordinates plots are two such methods. In principle these methods generalize to arbitrary numbers of variables but become difficult to interpret for even moderate numbers of variables. This article demonstrates that the impact of high dimensions is much less severe when the component displays are clustered together according to some index of merit. Effectively, this clustering reduces the dimensionality and makes interpretation easier. For scatterplot matrices and parallel coordinates plots clustering of component displays is achieved by finding suitable permutations of the variables. I discuss algorithms based on cluster analysis for finding permutations, and present examples using various indices of merit.  相似文献   

12.
The energy distribution of wind-driven ocean waves is of great interest in marine science. Discovering the generating process of ocean waves is often challenging and the direction is the key for a better understanding. Typically, wave records are transformed into a directional spectrum which provides information about the wave energy distribution across different frequencies and directions. Here, we propose a new time series clustering method for a series of directional spectra to extract the spectral features of ocean waves and develop informative visualization tools to summarize identified wave clusters. We treat directional distributions as functional data of directions and construct a directional functional boxplot to display the main directional distribution of the wave energy within a cluster. We also trace back when these spectra were observed, and we present color-coded clusters on a calendar plot to show their temporal variability. For each identified wave cluster, we analyze wind speed and wind direction hourly to investigate the link between wind data and wave directional spectra. The performance of the proposed clustering method is evaluated by simulations and illustrated by a real-world dataset from the Red Sea. Supplementary materials for this article are available online.  相似文献   

13.
The analysis of large-scale data sets using clustering techniques arises in many different disciplines and has important applications. Most traditional clustering techniques require heuristic methods for finding good solutions and produce suboptimal clusters as a result. In this article, we present a rigorous biclustering approach, OREO, which is based on the Optimal RE-Ordering of the rows and columns of a data matrix. The physical permutations of the rows and columns are accomplished via a network flow model according to a given objective function. This optimal re-ordering model is used in an iterative framework where cluster boundaries in one dimension are used to partition and re-order the other dimensions of the corresponding submatrices. The performance of OREO is demonstrated on metabolite concentration data to validate the ability of the proposed method and compare it to existing clustering methods.  相似文献   

14.
We discuss the relation between classes and clusters in datasets with given classes. We examine the distribution of classes within obtained clusters, using different clustering methods which are based on different techniques. We also study the structure of the obtained clusters. One of the main conclusions, obtained in this research is that the notion purity cannot be always used for evaluation of accuracy of clustering techniques.  相似文献   

15.
The field of cluster analysis is primarily concerned with the sorting of data points into different clusters so as to optimize a certain criterion. Rapid advances in technology have made it possible to address clustering problems via optimization theory. In this paper, we present a global optimization algorithm to solve the hard clustering problem, where each data point is to be assigned to exactly one cluster. The hard clustering problem is formulated as a nonlinear program, for which a tight linear programming relaxation is constructed via the Reformulation-Linearization Technique (RLT) in concert with additional valid inequalities that serve to defeat the inherent symmetry in the problem. This construct is embedded within a specialized branch-and-bound algorithm to solve the problem to global optimality. Pertinent implementation issues that can enhance the efficiency of the branch-and-bound algorithm are also discussed. Computational experience is reported using several standard data sets found in the literature as well as using synthetically generated larger problem instances. The results validate the robustness of the proposed algorithmic procedure and exhibit its dominance over the popular k-means clustering technique. Finally, a heuristic procedure to obtain a good quality solution at a relative ease of computational effort is also described.  相似文献   

16.
文本聚类是聚类技术的重要研究领域.该技术根据文本的相似特征或相似表达式对文本进行聚类,使得属于同类的文本具有最大的相似性,而属不同类文本具有最大的差异性.与其它文字相比,蒙古文的结构和书写方式具有许多特征.本文结合K-means与克隆免疫算法提出了一种称为ICKM的新型聚类技术.四种元素集上的仿真实验说明了我们提出的方法在蒙古文聚类的有效性.  相似文献   

17.
18.
In the acyclic case, we establish a one-to-one correspondence between the tilting objects of the cluster category and the clusters of the associated cluster algebra. This correspondence enables us to solve conjectures on cluster algebras. We prove a multiplicativity theorem, a denominator theorem, and some conjectures on properties of the mutation graph. As in the previous article, the proofs rely on the Calabi-Yau property of the cluster category.  相似文献   

19.
本文给出了分析多个相异性矩阵的三种方法.首先找到了一种图表示,使我们对所有相异性矩阵有一个总体的了解;其次定义了一个新的相异性矩阵,它可以看作是对所有原始相异性矩阵的一个折衷处理;最后提出了一种MIMU方法.在文中我们还对由上述方法得到的坐标图进行了比较.  相似文献   

20.
Data clustering, also called unsupervised learning, is a fundamental issue in data mining that is used to understand and mine the structure of an untagged assemblage of data into separate groups based on their similarity. Recent studies have shown that clustering techniques that optimize a single objective may not provide satisfactory result because no single validity measure works well on different kinds of data sets. Moreover, the performance of clustering algorithms degrades with more and more overlaps among clusters in a data set. These facts have motivated us to develop a fuzzy multi-objective particle swarm optimization framework in an innovative fashion for data clustering, termed as FMOPSO, which is able to deliver more effective results than state-of-the-art clustering algorithms. The key challenge in designing FMOPSO framework for data clustering is how to resolve cluster assignments confusion with such points in the data set which have significant belongingness to more than one cluster. The proposed framework addresses this problem by identification of points having significant membership to multiple classes, excluding them, and re-classifying them into single class assignments. To ascertain the superiority of the proposed algorithm, statistical tests have been performed on a variety of numerical and categorical real life data sets. Our empirical study shows that the performance of the proposed framework (in both terms of efficiency and effectiveness) significantly outperforms the state-of-the-art data clustering algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号