首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inelastic scattering of a low-energy atomic helium beam (HAS) by a physisorbed monolayer is treated in the one-phonon approximation using a time-dependent wave packet formulation. The calculations show that modes with shear horizontal polarization can be excited near high symmetry azimuths of the monolayer, in agreement with recent experiments. The parameters of the calculations are chosen to match the conditions of HAS experiments for triangular incommensurate monolayer solids of xenon, krypton, and argon adsorbed on the (111) face of platinum, and the results show many of the systematic experimental trends for relative excitation probability of the shear horizontal and longitudinal acoustic phonon branches. The inelastic scattering at beam energies near 8 meV is exceedingly sensitive to small misalignment between the scattering plane and the high symmetry directions of the monolayer solid. The diffraction and inelastic processes arise from a strong coupling of the incident atom to the target and the calculated results show large departures from expectations based on analogies to inelastic thermal neutron scattering.  相似文献   

2.
Conditions likely to lead to enhanced inelastic atomic scattering that creates shear horizontal (SH) and longitudinal acoustic (LA) monolayer phonons are identified, specifically examining the inelastic scattering of (4)He atoms by a monolayer solid of XePt(111) at incident energies of 2-25 meV. There is strong inelastic scattering for both dispersive phonon branches (SH and LA) of the monolayer at incident energies below 8 meV. Several improvements enable more complete wave packet calculations of the inelastic scattering than in previous work. Long propagation times are made feasible by adding an absorbing potential at large distance. The times now extend to beyond 100 ps and enable a clarification of processes involving transient trapping of the He atoms. The wave packet is made more monochromatic by significantly increasing the spatial width of the initial Gaussian shape. The narrower energy distribution in the incident beam then enables a demonstration of strong energy dependence of the scattering over a scale of less than 0.3 meV.  相似文献   

3.
We have examined the low-energy single-phonon vibrations of disordered mono- and bilayers of sulfur hexafluoride physisorbed on Au(111) with inelastic helium atom scattering. At monolayer coverages, SF6 exhibits a dispersionless Einstein mode at 3.6 +/- 0.4 meV. We observed two distinct overtones of this vibration as both creation and annihilation events at 7.1 +/- 0.7 meV and 10.9 +/- 1.4 meV, respectively. The overtones are harmonic multiples of the fundamental Einstein oscillation. Bilayers of SF6 exhibit a softer fundamental vibration with an excitation energy of 3.3 +/- 0.3 meV. This softening, due to the weaker SF6 binding, also results in reduced overtone energies of 6.6 +/- 0.7 meV and 9.8 +/- 0.6 meV. The disordered bilayer does not exhibit dispersion, indicating that the molecules are still behaving like Einstein oscillators and not beginning to act as bulk crystalline SF6. The results have improved our understanding of the adsorbate-substrate and interadsorbate interactions which govern the properties of this model molecular physisorption system.  相似文献   

4.
Density functional perturbation theory has been applied to study the surface vibrations of (2 × 2)-K monolayer on the Be(0001) surface. We present the full phonon dispersion curves along the high symmetry directions of the surface Brillouin zone (SBZ) together with the layer-projected phonon density of states and the phonon-induced surface charge density oscillations at Γ and M for the alkali SV and L modes. Surprisingly, at the M point, the L-phonon displacements produce a more pronounced perturbation on the surface charge density than the SV-phonon displacements. These results apparently solve the long-standing question regarding helium atom scattering (HAS) experiments performed on the similar system (2 × 2)-K on graphite, where the alkali SV phonon mode is not observed. Moreover, this result confirms the previous finding that HAS from free-electron metal surfaces probes directly the phonon-induced charge density oscillations and the related electron-phonon interaction.  相似文献   

5.
The authors have developed a new experimental approach for measuring gas-surface selective adsorption resonances with much higher energy resolution and over a wider range of kinematic conditions than has previously been possible. The technique involves using a 3He spin-echo spectrometer as a Fourier transform helium atom scattering apparatus. The authors applied the technique to the He-LiF(001) system. They developed a new empirical potential for the He-LiF(001) system by analyzing and refining the best existing potentials in the light of the new data set. Following an initial free-particle model analysis, the authors used exact close coupling scattering calculations to compare the existing potentials with the new experimental data set. Systematic differences are observed between the two. The existing potentials are modified by simple transformations to give a refined potential that is consistent with and fully reproduces the experimental data. Their technique represents a new approach for developing very high precision empirical potentials in order to test first principles theory.  相似文献   

6.
The phonon dispersion in the Kondo-insulator YbB12 and its structure analogue LuB12 has been studied in a wide energy range (up to 55 meV) by means of inelastic neutron scattering. The specific shape of phonon dispersion curves for low-frequency lattice vibrations could be described on the basis of a strong hierarchy suggested for the interactions between boron and rare-earth (RE) atoms: B-B?B-RE?RE-RE.  相似文献   

7.
Utilizing a supersonic molecular-beam scattering technique, the angular intensity distributions of alkane molecules (CH4 and C2H6) have been measured, which are scattered from a chemically inert and highly oriented monolayer graphite (MG) on Pt(111). A MG which covers the Pt(111) surface with a full monolayer is found to induce a large energy loss of alkanes during collision with the surface by phonon creation due to the large mass ratio of an alkane molecule with respect to MG. Based on the classical cube model, only applicable to the molecules without internal mode excitation, the effective masses of MG of 76 (six atoms of carbon) and Pt(111) of 585 (three atoms of platinum) are determined from rare-gas atom scattering data. Despite the difference in the degree of freedom between CH4 and rare-gas atoms, CH4 scattering is found to be well described by the simple hard-cube model as a result of the high symmetry of the CH4 structure. With the recently developed ellipsoid-washboard model, an extension of the hard-cube model to include some internal mode excitation of impinging molecules in addition to the surface corrugation, it is found that unlike CH4 the cartwheel rotation mode of C2H6 is significantly excited during collision, while the helicopter mode excitation is negligible on a flat MG surface.  相似文献   

8.
Electron energy loss spectrum, elastic reflectivity and selected vibrational excitation functions were measured by High Resolution Electron Energy Loss Spectroscopy (HREELS) for deuterated nanocrystalline dc GD CVD diamond films. The electron elastic reflectivity is strongly enhanced at about 13 eV, as a consequence of the second absolute band gap of diamond preserved up to the surface for D-nano-crystallites. The pure bending modes δ(CD(x)) at 88 meV and 107 meV are dominantly excited through the impact mechanism and their vibration excitation functions mimic the electron elastic reflectivity curve. Pure diamond phonon mode ν(CC) can be probed through the resolved fundamental loss located at 152 meV and through the multiple loss located at 300 meV. In addition to the well-known 8 eV resonance, two supplementary resonances located at 4.5 eV and 11.5 eV were identified and clearly resolved for the first time. A comprehensive set of data is now available on low-energy electron scattering at hydride terminated polycrystalline diamond films grown either by HF (microcrystalline) or dc GD (nanocrystalline) chemical vapour deposition. The careful comparison of the vibrational excitation functions for hydrogen/deuterium termination stretching modes ν(sp(3)-CH(x)) and ν(sp(3)-CD(x)), for hydrogen termination bending modes δ(CH(x)) mixed with diamond lattice modes ν(CC), for deuterium termination bending modes δ(CD(x)), and for multiple loss 2ν(CC) demonstrates the close interplay between three characteristics: (i) the density-of-states of the substrate, (ii) the vibrational excitation mechanisms (dipolar and/or impact scattering including resonant scattering) and (iii) the surface versus lattice character of the excited vibrational modes. This work shows clearly that excitation function measurement provides a powerful and sensitive tool to clarify loss attributions, involved excitation mechanisms, and surface versus lattice characters of the excited vibrational modes.  相似文献   

9.
Single ionization of helium and atomic hydrogen by the impact of protons and antiprotons is considered. Using a multiple scattering model, first proposed by Garibotti and Miraglia [1], angular and energy distributions of the ejected electrons are calculated. Structures arising in the cross section, especially the Coulomb density of states effect (CDS), are analysed. The contributions of various scattering amplitudes to the cross section are studied. It is concluded that multiple scattering together with the CDS-effect play an important role in determining the transition amplitude. Differences between particle and antiparticle impact are examined. In addition to the different behaviour of the CDS-effect, the interference of two scattering amplitudes turns out to be decisive in ionization by particle and antiparticle impact.  相似文献   

10.
The scattering behavior of neutral ammonia clusters off a LiF(100) surface is studied. Ammonia clusters are produced by a coexpansion of NH3 and Kr with an average kinetic energy of 48 meV per monomer molecule. Using single photon VUV laser ionization at λ = 118 nm (hv = 10.49 eV) the mass distribution of scattered particles is obtained in a reflecting time-of-flight mass spectrometer. Compared with the incoming cluster beam the average cluster size of the scattered particles is drastically decreased. The angular distribution of NH 3 + and NH 4 + after scattering reveals a strong inelastic interaction between the clusters and the LiF(100) surface which is described in the context of a thermokinetic model and a phonon excitation along the (001) azimuth of the LiF(100) surface.  相似文献   

11.
The vibrational dynamics of large Ar n clusters from n=30 to n=4500 is investigated by measuring the energy loss of He atoms in a high resolution scattering experiment. The clusters are generated by adiabatic expansion through conical nozzles and contain a distribution of cluster sizes. The He supersonic nozzle beam provides a resolution of better than 1 meV. The results are compared with calculated spectral density functions for single cluster sizes and bulk phonon spectra.  相似文献   

12.
It is shown that a commensurate square monolayer solid of Kr/NaCl(001) can be stabilized with a model incorporating a rather large energy corrugation amplitude. Then a square bilayer is formed under a compression and preempts the formation of an incommensurate triangular monolayer lattice. The lattice dynamics of the commensurate monolayer may be complex, because the modeling admits the possibility that it has a (2 × 2) unit cell with four Kr atoms.  相似文献   

13.
We have recorded the S1 <-- S0 electronic spectra of Biphenylene and its Ar and O2 van der Waals complexes inside helium nanodroplets using beam depletion detection. In general, the spectrum is similar to the previously reported high-resolution REMPI spectrum. The zero phonon lines, however, are split similar to the previously reported tetracene case. The calculated potential energy surface predicts that helium atoms can simultaneously occupy all equivalent global minima positions. Therefore, it appears that the splitting cannot be explained either by different isomers or by tunneling. Furthermore, surprisingly the splitting is retained for the Ar van der Waals complexes (and possibly for the O2 complex as well). This case suggests that the current models of the origin of zero phonon line splitting and the helium solvation are incomplete.  相似文献   

14.
The dynamics of atoms or molecules adsorbed on a metal surface, and excited by collisions with an atomic beam, are treated within a theory that includes energy dissipation into lattice vibrations by means of a frequency and temperature dependent friction function. The theory provides dynamic structure factors for energy transfer derived from collisional time correlation functions. It describes the relaxation of a vibrationally excited atom or molecule within a model of a damped quantum harmonic oscillator bilinearly coupled to a bath of lattice oscillators. The collisional time correlation function is generalized to include friction effects and is applied to the vibrational relaxation of the frustrated translation mode of Na adsorbed on a Cu(001) surface, CO on Cu(001), and CO on Pt(111), following excitation by collisions with He atoms. Results for the frequency shift and width of line shapes versus surface temperature are in very good agreement with experimental measurements of inelastic He atom scattering. Our interpretation of the experimental results provides insight on the relative role of phonon versus electron-hole relaxation.  相似文献   

15.
The three isomeric dimethylxanthines and trimethylxanthine are studied by neutron spectroscopy up to energy transfers of 100 meV at energy resolutions ranging from 0.7 microeV to some meV. The loss of elastic intensity with increasing temperature can be modeled by quasielastic methyl rotation. The number of inequivalent methyl groups is in agreement with those of the room temperature crystal structures. Activation energies are obtained. In the case of theophylline, a doublet tunneling band is observed at 15.1 and 17.5 microeV. In theobromine, a single tunneling band at 0.3 microeV is found. Orientational disorder in caffeine leads to a 2.7 microeV broad distribution of tunneling bands around the elastic line. At the same time, broad low energy phonon spectra characterize an orientational glassy state with weak methyl rotational potentials. Librational energies of the dimethylxanthines are clearly seen in the phonon densities of states. Rotational potentials can be derived which explain consistently all observables. While their symmetry in general is threefold, theophylline shows a close to sixfold potential reflecting a mirror symmetry.  相似文献   

16.
A systematic method for approximating the ab initio electronic energy of crystal lattices has been improved by the incorporation of long range electrostatic and dispersion interactions. The effect of these long range interactions on the optimization of the crystal structure is reported. The harmonic lattice dynamics have been evaluated to give phonon frequencies and neutron scattering intensities. Exemplary results are reported for diamond, silicon, and α-quartz using Hartree-Fock, M?ller-Plesset perturbation, and coupled-cluster levels of ab initio theory.  相似文献   

17.
Low-temperature orientationally ordered structures of two-dimensional C60   总被引:1,自引:0,他引:1  
Orientationally ordered structures of two-dimensional (2D) C(60) at low temperature have been investigated theoretically and experimentally. Using total energy optimization with a phenomenological potential, we find the ground state is a close packed hexagonal lattice in which all the molecules have the same orientation. Several local minima of the potential energy surface are found to be associated with other 1 x 1 lattices as well as 2 x 2 lattices. The energies of the orientational domain boundaries of the 1x1 lattices are also computed, and two kinds of which yield negative values. A majority of these theoretical findings are confirmed by our low-temperature scanning tunneling microscopy study of a 2D C(60) array supported on a self-assembled monolayer.  相似文献   

18.
In methane hydrate the dominant peak in the density of states above 3 meV represents a rattling mode of the guest molecule CH(4) in the large ice cages. This mode shifts from 6.7 meV at T=4.5 K to T=30 K to 7.14 meV with conversion of CH(4) guest molecules into the tunneling ground state. The less symmetric angular density distribution PsiPsi(*) in the excited rotational state compared to the ground state allows the methane to fit better in the orientation dependent cage potential surface. This leads to a larger average distance to the cage-forming molecules with a weaker potential and a reduced rattling energy. A two state single particle model with characteristic rattling energies of 5.20 meV for pure T-methane and 7.3 meV for pure A-methane weighted by the population factors can fit the data.  相似文献   

19.
Mesophase separation has been identified in a polycation/anionic-nonionic mixed micelle system formed by the coacervation of poly(diallyldimethylammoniumchloride)/sodium dodecylsulfate-Triton X-100 in 0.40 M NaCl. The resultant dense, optically clear fluid was studied by turbidity, dynamic light scattering (DLS), and rheology. The presence of two diffusion modes in DLS points to microscopic heterogeneity: coexistence of micelle-rich (dense) domains with micelle-poor (dilute) domains. With an increase in temperature above 20 degrees C, the turbidity rises rapidly along with the intensity of the slow mode. The concomitant decrease in the diffusivity of the slow mode signals an increase in the effective viscosity of the dense domain. With further increase in temperature, dramatic shear thinning is observed, and finally, macroscopic phase separation can be identified by centrifugation. At a temperature near that for quiescent phase separation, we observe shear-induced phase separation. We propose a mechanism to explain the connection between temperature- and shear-induced mesophase separation.  相似文献   

20.
We have measured the dependence of the relative integral cross section of the reaction Li + HF → LiF + H on the collision energy (excitation function) using crossed molecular beams. By varying the intersection angle of the beams from 37° to 90° we covered the energy range 25 meV ≤ E(tr) ≤ 131 meV. We observe a monotonous rise of the excitation function with decreasing energy over the entire energy range indicating that a possible translational energy threshold to the reaction is significantly smaller than 25 meV. The steep rise is quantitatively recovered by a Langevin-type excitation function based on a vanishing threshold and a mean interaction potential energy ∝R(-2.5) where R is the distance between the reactants. To date all threshold energies deduced from ab initio potentials and zero-point vibrational energies are at variance with our results, however, our findings support recent quantum scattering calculations that predict significant product formation at collision energies far below these theoretical thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号