首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 582 毫秒
1.
The group knapsack and knapsack problems are generalised to shortest path problems in a class of graphs called knapsack graphs. An efficient algorithm is described for finding shortest paths provided that arc lengths are non-negative. A more efficient algorithm is described for the acyclic case which includes the knapsack problem. In this latter case the algorithm reduces to a known algorithm.  相似文献   

2.
This paper addresses a variant of the quickest path problem in which each arc has an additional parameter associated to it representing the energy consumed during the transmission along the arc while each node is endowed with a limited power to transmit messages. The aim of the energy-constrained quickest path problem is to obtain a quickest path whose nodes are able to support the transmission of a message of a known size. After introducing the problem and proving the main theoretical results, a polynomial algorithm is proposed to solve the problem based on computing shortest paths in a sequence of subnetworks of the original network. In the second part of the paper, the bi-objective variant of this problem is considered in which the objectives are the transmission time and the total energy used. An exact algorithm is proposed to find a complete set of efficient paths. The computational experiments carried out show the performance of both algorithms.  相似文献   

3.
In this paper an algorithm is presented for determining the K best paths that may contain cycles in a directed network.The basic idea behind the algorithm is quite simple. Once the best path has been determined it is excluded from the network in such a way that no new path is formed and no more paths are excluded. This step leads to an enlarged network where all the paths, but the best one, can be determined. The method is repeated until the desired paths have been computed.The proposed algorithm can be used not only for the classical K shortest paths problem but also for ranking paths under a nonlinear objective function, provided that an algorithm to determine the best path exists.Computational results are presented and comparisons with other approaches for the classical problem are made.  相似文献   

4.
模糊最短路问题在许多领域有着广泛的应用,研究这一问题具有重要意义。根据多准则决策理论求非被支配路径集合,求最大效用模糊最短路以及利用模糊数排序方法求模糊最短路是常用的三种研究方法,本文利用OERI排序原理,使网络模糊边长具有线性可加性,对具有三角模糊数边权的网络给出了一种标号算法,该算法简单高效,且易于在计算机上实现,算法的时间复杂度为O(n^2)。  相似文献   

5.
This paper presents a co-evolutionary particle swarm optimization (PSO) algorithm, hybridized with noising metaheuristics, for solving the delay constrained least cost (DCLC) path problem, i.e., shortest-path problem with a delay constraint on the total “cost” of the optimal path. The proposed algorithm uses the principle of Lagrange relaxation based aggregated cost. It essentially consists of two concurrent PSOs for solving the resulting minimization-maximization problem. The main PSO is designed as a hybrid PSO-noising metaheuristics algorithm for efficient global search to solve the minimization part of the DCLC-Lagrangian relaxation by finding multiple shortest paths between a source-destination pair. The auxiliary/second PSO is a co-evolutionary PSO to obtain the optimal Lagrangian multiplier for solving the maximization part of the Lagrangian relaxation problem. For the main PSO, a novel heuristics-based path encoding/decoding scheme has been devised for representation of network paths as particles. The simulation results on several networks with random topologies illustrate the efficiency of the proposed hybrid algorithm for the constrained shortest path computation problems.  相似文献   

6.
The quickest path problem is related to the classical shortest path problem, but its objective function concerns the transmission time of a given amount of data throughout a path, which involves both cost and capacity. The K-quickest simple paths problem generalises the latter, by looking for a given number K of simple paths in non-decreasing order of transmission time. Two categories of algorithms are known for ranking simple paths according to the transmission time. One is the adaptation of deviation algorithms for ranking shortest simple paths (Pascoal et al. in Comput. Oper. Res. 32(3):509–520, 2005; Rosen et al. in Comput. Oper. Res. 18(6):571–584, 1991), and another is based on ranking shortest simple paths in a sequence of networks with fixed capacity lower bounds (Chen in Inf. Process. Lett. 50:89–92, 1994), and afterwards selecting the K quickest ones. After reviewing the quickest path and the K-quickest simple paths problems we describe a recent algorithm for ranking quickest simple paths (Pascoal et al. in Ann. Oper. Res. 147(1):5–21, 2006). This is a lazy version of Chen’s algorithm, able to interchange the calculation of new simple paths and the output of each k-quickest simple path. Finally, the described algorithm is computationally compared to its former version, as well as to deviation algorithms.   相似文献   

7.
8.
A network with its arc lengths as imprecise number, instead of a real number, namely, interval number and triangular fuzzy number is considered here. Existing ideas on addition and comparison between two imprecise numbers of same type are introduced. To obtain a fuzzy shortest path from a source vertex to all other vertices, a common algorithm is developed which works well on both types of imprecise numbers under consideration. In the proposed algorithm, a decision-maker is to negotiate with the obtained fuzzy shortest paths according to his/her view only when the means are same but the widths are different of the obtained paths. Otherwise, a fuzzy optimal path is obtained to which the decision-maker always satisfies with different grades of satisfaction. All pairs fuzzy shortest paths can be found by repeated use of the proposed algorithm.  相似文献   

9.
The time-constrained shortest path problem is an important generalisation of the classical shortest path problem and in recent years has attracted much research interest. We consider a time-schedule network, where every node in the network has a list of pre-specified departure times and departure from a node may take place only at one of these departure times. The objective of this paper is to find the first K minimum cost simple paths subject to a total time constraint. An efficient polynomial time algorithm is developed. It is also demonstrated that the algorithm can be modified for finding the first K paths for all possible values of total time.  相似文献   

10.
We consider a variant of the constrained shortest path problem, where the constraints come from a set of forbidden paths (arc sequences) that cannot be part of any feasible solution. Two solution approaches are proposed for this variant. The first uses Aho and Corasick's keyword matching algorithm to filter paths produced by a k-shortest paths algorithm. The second generalizes Martins' deviation path approach for the k-shortest paths problem by merging the original graph with a state graph derived from Aho and Corasick's algorithm. Like Martins' approach, the second method amounts to a polynomial reduction of the shortest path problem with forbidden paths to a classic shortest path problem. Its significant advantage over the first approach is that it allows considering forbidden paths in more general shortest path problems such as the shortest path problem with resource constraints.  相似文献   

11.
Based on a pair of primal-dual LP formulations of the shortest path tree problem, the first algorithmic approach to reoptimizing the shortest paths subject to changes in the edge weights was proposed by S. Pallottino and M.G. Scutellá in 2003. We shall here focus solely on their introductory sections, propose some simplifications of the models considered, and finally relate the resulting models to the presentation of single-source shortest path problems in textbooks treating this subject with but limited or no reference to LP.Received: April 2004, Revised: August 2004, MSC classification: 90C05, 90C35, 90B10 Dedicated to the memory of Stefano Pallottino  相似文献   

12.
Constrained shortest path problems have many applications in areas like network routing, investments planning and project evaluation as well as in some classical combinatorial problems with high duality gaps where even obtaining feasible solutions is a difficult task in general.We present in this paper a systematic method for obtaining good feasible solutions to hard (doubly constrained) shortest path problems. The algorithm is based essentially on the concept of efficient solutions which can be obtained via parametric shortest path calculations. The computational results obtained show that the approach proposed here leads to optimal or very good near optimal solutions for all the problems studied.From a theoretical point of view, the most important contribution of the paper is the statement of a pseudopolynomial algorithm for generating the efficient solutions and, more generally, for solving the parametric shortest path problem.  相似文献   

13.
In real road networks, the presence of no-left, no-right or no U-turn signs, restricts the movement of vehicles at intersections. These turn prohibitions must be considered when calculating the shortest path between a starting and an ending point in a road network. We propose an extension of Dijkstra’s algorithm to solve the shortest path problem with turn prohibitions. The method uses arc labeling and a network structure with low memory requirements. We compare the proposed method with the dual graph approach in a set of randomly generated networks and Bogotá’s large-scale road network. Our computational experiments show that the performance of the proposed method is better than that of the dual graph approach, both in terms of computing time and memory requirements. We co-developed a Web-based decision support system for computing shortest paths with turn prohibitions that uses the proposed method as the core engine.  相似文献   

14.
Many real problems can be modelled as robust shortest path problems on digraphs with interval costs, where intervals represent uncertainty about real costs and a robust path is not too far from the shortest path for each possible configuration of the arc costs. In this paper we discuss the application of a Benders decomposition approach to this problem. Computational results confirm the efficiency of the new algorithm. It is able to clearly outperform state-of-the-art algorithms on many classes of networks. For the remaining classes we identify the most promising algorithm among the others, depending of the characteristics of the networks. Received: September 2004 / Accepted: March 2005 AMS classification: 90C47, 52B05, 90C57 The work was partially supported by the European Commission IST projects MOSCA (IST-2000-29557) and BISON (IST-2001-38923). All correspondence to: Roberto Montemanni  相似文献   

15.
In this paper we are concerned with a special class of bicriterion path problems. For the considered class of bicriterion problems at least one of the objectives is type MAXMIN. For the other one, besides an objective type MAXMIN also a MINSUM and a MINRATIO type objective are considered. Two algorithms are presented for the considered class of bicriterion path problems. The first one only determines the minimal complete set of nondominated paths and the second one determines the entire set of nondominated paths. Both algorithms can be used for any type of bicriterion path problems, since one of the objectives is type MAXMIN and an algorithm exists to determine the best path for the other objective. Computational statistics for the three types of considered bicriterion path problems are also presented.  相似文献   

16.
Shortest path problems play important roles in computer science, communication networks, and transportation networks. In a shortest path improvement problem under unit Hamming distance, an edge-weighted graph with a set of source–terminal pairs is given. The objective is to modify the weights of the edges at a minimum cost under unit Hamming distance such that the modified distances of the shortest paths between some given sources and terminals are upper bounded by the given values. As the shortest path improvement problem is NP-hard, it is meaningful to analyze the complexity of the shortest path improvement problem defined on rooted trees with one common source. We first present a preprocessing algorithm to normalize the problem. We then present the proofs of some properties of the optimal solutions to the problem. A dynamic programming algorithm is proposed for the problem, and its time complexity is analyzed. A comparison of the computational experiments of the dynamic programming algorithm and MATLAB functions shows that the algorithm is efficient although its worst-case complexity is exponential time.  相似文献   

17.
提出了基于最短路动态生成的一种新的非平衡交通分配迭代算法.在每轮迭代中,将按全有全无方法在当前最短路上分配的交通量与前一轮迭代所得到的交通量加权组合,而各O-D对的加权系数则依据Logit原则来确定.和Frank-Wolfe算法不同,不必通过一维搜索确定加权系数.同时又避免了Logit方法要求枚举所有路径的困难.本文还证明了算法的收敛性,而计算实例显示,由本算法所得结果与平衡交通分配非常接近,因而它是一个高效而可靠的交通分配算法,适用于大、中型道路交通网络的交通分配计算.  相似文献   

18.
There are potential advantages in formulating the routing problems in modern multiservice networks as multiple objective problems. This paper presents a novel hierarchical bi-level multiobjective dynamic routing model for multiservice networks. It is based on a bi-objective shortest path algorithm, with dynamically adapted soft-constraints, to compute alternative paths for each node pair and on a heuristic to synchronously select alternative routing plans for the network in a dynamic alternative routing context. It is a routing method which periodically changes alternative paths as a function of periodic updates of certain QoS related parameters obtained from real-time measurements. The performance of the proposed routing method is compared with two reference dynamic routing methods namely RTNR and DAR by means of a discrete-event simulator.A previous short version of this work was presented at INOC’03 (International Network Optimisation Conference). Work partially supported by programme POSI of the III EC programme cosponsored by FEDER and national funds.  相似文献   

19.
This paper presents the problem of determining the estimated time of arrival (ETA) at the destination port for a ship located at sea. This problem is formulated as a shortest path problem with obstacles, where the obstacles are modelled by polygons representing the coastlines. An efficient solution algorithm is proposed to solve the problem. Instead of generating a complete visibility graph and solving the problem as an ordinary shortest path problem, the algorithm constructs arcs to the ship node during the solution process only when needed. This greatly enhances the algorithmic performance. Computational results based on test problems from an actual dry-bulk shipping operation are provided. The proposed algorithm is implemented in a decision support system for the planning of ship operations and it has successfully been applied on several real life problems.  相似文献   

20.
We describe the implementation and testing of two methods, based on the auction approach, for solving the problem of minimizing a separable convex cost subject to generalized network flow conservation constraints. The first method is the -relaxation method of Ref. 1; the second is an extension of the auction sequential/shortest path algorithm for ordinary network flow to generalized network flow. We report test results on a large set of randomly generated problems with varying topology, arc gains, and cost function. Comparison with the commercial code CPLEX on linear/quadratic cost problems and with the public-domain code PPRN on nonlinear cost ordinary network problems are also made. The test results show that the auction sequential/shortest path algorithm is generally fastest for solving quadratic cost problems and mixed linear/nonlinear cost problems with arc gain range near 1. The -relaxation method is generally fastest for solving nonlinear cost ordinary network problems and mixed linear/nonlinear cost problems with arc gain range away from 1. CPLEX is generally fastest for solving linear cost and mixed linear/quadratic cost problems with arc gain range near 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号