首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 83 毫秒
1.
We carried out the structural, morphological and transport study of PrFe0.5Ni0.5O3 thin films prepared by pulsed laser deposition (PLD) over various substrates. Different substrates like LaAlO3 (001),GaAs(001) and Si(001) were used for deposition to understand effect of lattice mismatch on various physical properties. The film deposited on LaAlO3 was of best quality with well (001)-oriented and having good crystalline properties. Whereas, film deposited on GaAs(001) is well textured. Both films shows semiconducting behavior and resistance of the film deposited on GaAs(001) shows larger than that of film deposited on LAO. However, film deposited on Si, also shows polycrystalline growth with unusual metallic behavior. We tried to correlate this behavior with strain-induced growth of these films. Other possibilities for this unusual trend is also explored.  相似文献   

2.
Lithium niobate LiNbO3 thin films were deposited onto silicon (111) Si and sapphire (001) AI2O3 single crystal substrates by the pyrosol and/or r.f. sputtering processes. A matrix of experiments was designed to determine the effects of several experimental parameters on the resulting film quality (stoichiometry, crystallization state) and properties. Under optimized conditions, requiring the combination of the two above-mentioned deposition techniques, <001 > oriented polycrystalline LiNbO3 films were grown which exhibit homogeneous and columnar grain structures with the <c > -polar axis normal to the substrate surface.  相似文献   

3.
以柔性不锈钢基底上经磁控溅射沉积的钛膜为钛源, 在1 mol·L-1的低浓度NaOH溶液中水热法制备了朝基底上方取向生长的大长径比柔性TiO2纳米须薄膜, 考察了钛膜沉积条件对纳米须薄膜的影响, 系统研究了水热反应条件对薄膜生长过程的影响及TiO2纳米须薄膜的形成机制. 通过场发射扫描电镜(FESEM)、X射线能谱仪(EDS)、高分辨透射电子显微镜(HRTEM)、X射线衍射仪(XRD)等对样品进行了表征. 结果表明, 与室温沉积的钛膜相比, 600 ℃下沉积的钛膜水热后得到的纳米线薄膜与基底的附着力更好. 所得TiO2纳米须为单晶锐钛矿, 经由Na2Ti2O4(OH)2、H2Ti2O5·H2O转变而来. 纳米须形成于水热阶段, 平行于Na2Ti2O4(OH)2的(100)晶面择优取向生长, 纳米须经历了纳米片→纳米线束→纳米线的裂解生长过程. 朝基底上方取向生长的纳米须薄膜的形成是低浓度NaOH溶液与较高水热温度(220 ℃)协同作用的结果. 进一步在Na2SO4溶液中研究了薄膜电极的光电化学性能, 结果表明, TiO2纳米须薄膜的光电性能明显优于零维纳米颗粒薄膜和二维纳米片薄膜, 显示了良好的应用前景.  相似文献   

4.
The 0.2Bi(Zn1/2Ti1/2)O3–0.8PbTiO3 (0.2BZT–0.8PT) ferroelectric thin film was successfully fabricated on Pt(111)/Ti/SiO2/Si substrates by a sol–gel method. The result indicates that the film exhibits the (100) preferred orientation and has a relatively dense and uniform microstructure with a thickness of ~230 nm. The formation mechanism of the oriented films was ascribed to the growth of the (100) oriented PbO layer at ~450 °C during a layer-by-layer crystallization process. Temperature-dependent electrical properties of the 0.2BZT–0.8PT films were investigated, showing that the film has a potential for high temperature applications.  相似文献   

5.
Al2O3 and TiO2 thin films were deposited by atomic layer deposition at 80-250 °C on various polymeric substrates such as polymethylmethacrylate (PMMA), polyetheretherketone (PEEK), polytetrafluoroethylene (PTFE) and ethylenetetrafluoroethylene (ETFE). The films were studied with FESEM, EDX, XRD, contact angle measurements and adhesion tests. The film growth rates on the thermoplastics were close to the corresponding growth rates on Si substrates. The adhesion of the films was good on PEEK and poor on PTFE. All coated surfaces showed lower water contact angles than the uncoated thermoplastics. Furthermore, the water contact angles on all TiO2-coated surfaces decreased upon UV illumination, most efficiently with crystalline TiO2 coatings.  相似文献   

6.
采用分子束外延法分别在650-920 ℃的Si(110)和920 ℃的Si(111)衬底表面生长出铁的硅化物纳米结构,并主要分析了920 ℃高温下纳米结构的形貌、组成相及其与Si 衬底的取向关系. 扫描隧道显微镜(STM)研究表明,920 ℃高温下,Si(110)衬底上生长的铁硅化合物完全以纳米线的形式存在,且其尺寸远大于650 ℃低温下外延生长的纳米线尺寸;Si(111)衬底上生长出三维岛和薄膜两种形貌的铁硅化合物,其中三维岛具有金属特性且直径约300 nm、高约155 nm,薄膜厚度约2 nm. 电子背散射衍射研究表明920 ℃高温下Si(110)衬底上生长的纳米线仅以β-FeSi2的形式存在,且β-FeSi2相与衬底之间存在唯一的取向关系:β-FeSi2(101)//Si(111);β-FeSi2 [010]//Si[110];Si(111)衬底上生长的三维岛由六方晶系的Fe2Si 相组成,Fe2Si 属于164 空间群,晶胞常数为a=0.405 nm,c=0.509 nm;与衬底之间的取向关系为Fe2Si(001)∥Si(111)和Fe2Si[120]//Si[112].  相似文献   

7.
Thin films of La1−xSrxCoO3, Nd0.5Sr0.5CoO3, Gd0.5Sr0.5CoO3 and SrRuO3 have been deposited on Si(100), LaAlO3(100) and SrTiO3(100) single crystal substrates by nebulized spray pyrolysis. The films deposited on Si are generally polycrystalline, but they are highly oriented on the oxide substrates. The cobaltate films are generally not metallic, but exhibit low resistivity specially when x=0.3 and 0.5, the latter also exhibiting ferromagnetic characteristics. Films of La0.7Sr0.3CoO3 show negative magnetoresistance of 35% around 180 K. Films of SrRuO3 are metallic on Si and LaAlO3 substrates but show an insulator–metal transition on SrTiO3 around 130 K, around which temperature negative magnetoresistance is observed.  相似文献   

8.
Sol-gel processed PbTiO3 thin films have been deposited by spin coating onto different subtrates; Si[111], Si/Al, Si/SiO2/Cr/Pt, MgO[100], SrTiO3[100] and sapphire. Interactions between the substrate and PbTiO3 films after heat treatment have been studied by X-ray diffraction and Rutherford Back Scattering. When deposited onto sapphire and Si[111], PbTiO3 films exhibit a preferred orientation with (101) perpendicular to the substrate. These films become oriented along (100) onto MgO and (001) onto SrTiO3[100] substrates. A strong channelling effect is observed by the RBS technique when the film is oriented along the c axis on SrTiO3[100] suggesting that these films are epitaxially grown. The diffusion of metal atoms during the thermal treatment gives rise to the formation of lead silicate on Si[111] substrates. As a result a pyrochlore phase is formed. Lead titanate films on Si/SiO2/Cr/Pt and Si/Al substrates are polycrystalline and do not exhibit any texture.  相似文献   

9.
Rare-earth (RE) doped Ba(Zr,Ti)O3 (BZT) thin films were prepared by rf-magnetron sputtering from a Ba0.90Ln0.067Zr0.09Ti0.91O3 (Ln=La, Nd) target. The films were deposited at a substrate temperature of 600 °C in a high oxygen pressure atmosphere. X-ray diffraction (XRD) patterns of RE-BZT films revealed a 〈001〉 epitaxial crystal growth on Nb-doped SrTiO3, 〈001〉 and 〈011〉 growth on single-crystal Si, and a 〈111〉-preferred orientation on Pt-coated Si substrates. Scanning electron microscopy (SEM) showed uniform growth of the films deposited, along with the presence of crystals of about half-micron size on the film's surface. Transmission electron microscopy (TEM) evidenced high crystalline films with thicknesses of about 100 nm for 30 min of sputtering. Electron-probe microanalysis (EPMA) corroborated the growth rate (3.0-3.5 nm/min) of films deposited on Pt-coated Si substrates. X-ray photoelectron spectroscopy (XPS), in depth profile mode, showed variations in photoelectron Ti 2p doublet positions at lower energies with spin-orbital distances characteristic of BaTiO3-based compounds. The XPS analysis revealed that lanthanide ions positioned onto the A-site of the BZT-perovskite structure increasing the MO6-octahedra distortion (M=Ti, Zr) and, thereby, modifying the Ti-O binding length. Polarization-electric field hysteresis loops on Ag/RE-doped BZT/Pt capacitor showed good ferroelectric behavior and higher remanent polarization values than corresponding non-doped system.  相似文献   

10.
CaCu3Ru4O12 (CCRO) is a conductive oxide having the same structure as CaCu3Ti4O12 (CCTO) and close lattice parameters. The later compound is strongly considered for high density parallel plates capacitors application due to its so-called colossal dielectric constant. The need for an electrode inducing CCTO epitaxial growth with a clean and sharp interface is therefore necessary, and CCRO is a good potential candidate. In this paper, the synthesis of monophasic CCRO ceramic is reported, as well as pulsed laser deposition of CCRO thin film onto (001) NdCaAlO4 substrate. Structural and physical properties of bulk CCRO were studied by transmission electron microscopy and electron spin resonance. CCRO films and ceramic exhibited a metallic behavior down to low temperature. CCRO films were (001) oriented and promoted a CCTO film growth with the same orientation.  相似文献   

11.
Complex oxide heterostructures on Si gain in the field of engineered Si wafers increasing interest as flexible buffer systems for developing virtual Si substrates. Strain engineering of thin epitaxial Si thin films on insulating oxide buffers is of special interest to boost charge carrier mobility for Silicon‐on‐Insulator (SOI) technologies. The single crystalline Si(111)/Y2O3 (111)/Pr2O3 (111)/Si(111) heterostructure offers, in principle, the opportunity to grow strain‐engineered epitaxial Si(111) layers, realizing compressed, fully relaxed, as well as tensile‐strained Si films. This flexibility is based on a thickness‐dependence of the Y2O3 lattice constant in the oxide bi‐layer buffer: In theory, the Y2O3 buffer lattice constant on Pr2O3/Si(111) can change from pseudomorphism (bigger than Si) over the Si lattice constant towards a fully relaxed status (smaller than Si). By a detailed interface analysis, using TEM‐EELS in combination with an in‐situ RHEED–XPS study of the isomorphic Y2O3 growth on Pr2O3/Si(111), the physical origin of this Y2O3 buffer lattice constant variation is identified. It is possible to discriminate between the contributions from chemical mixing effects between the isomorphic oxides Y2O3 and Pr2O3 on the one hand and true misfit strain relaxation mechanisms in stoichiometric Y2O3 on the other hand. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
The crystal growth and morphology in 150‐nm‐thick PET nanocomposite thin films with alumina (Al2O3) nanoparticle fillers (38 nm size) were investigated for nanoparticle loadings from 0 to 5 wt %. Transmission electron microscopy of the films showed that at 1 wt % Al2O3, the nanoparticles were well dispersed in the film and the average size was close to the reported 38 nm. Above 2 wt % Al2O3, the nanoparticles started to agglomerate. The crystal growth and morphological evolution in the PET nanocomposite films kept at an isothermal temperature of 217 °C were monitored as a function of the holding time using in situ atomic force microscopy. It was found that the crystal nucleation and growth of PET was strongly dependent on the dispersed particles in the films. At 1 wt % Al2O3, the overall crystal growth rate of PET lamellae was slower than that of the PET homopolymer films. Above 2 wt % Al2O3, the crystal growth rate increased with nanoparticle loading because of heterogeneous nucleation. In addition, in these PET nanocomposite thin films, the Al2O3 nanoparticles induced preferentially oriented edge‐on lamellae with respect to the surface, which was not the case in unfilled PET as determined by grazing‐incidence X‐ray diffraction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 747–757, 2007  相似文献   

13.
Growth of magnetron sputtered Pt/CeO2 thin films on Si and Si3N4 were characterized by X‐ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and X‐ray photoelectron spectroscopy (XPS). Interaction of Pt/CeO2 films with Si on Si and Si3N4 substrates was extensively investigated by XPS. XRD studies show that films are oriented preferentially to (200) direction of CeO2. XPS results show that Pt is mainly present in +2 oxidation state in Pt/CeO2/Si film, whereas Pt4+ predominates in Pt/CeO2/Si3N4 film. Concentration of Pt4+ species is more than four times on Si3N4 substrate as compared with that on Si. Ce is present as both +4 and +3 oxidation states in Pt/CeO2 films deposited on Si and Si3N4 substrates, but concentration of Ce3+ species is more in Pt/CeO2/Si film. Interfacial reaction between CeO2 and Si substrate is controlled in the presence of Pt. Pt/Ce concentration ratio decreases in Pt/CeO2/Si3N4 film upon successive sputtering, whereas this ratio decreases initially and then increases in Pt/CeO2/Si film. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
掺杂钒和硅对TiO2薄膜超亲水性的影响   总被引:2,自引:0,他引:2  
0引言 TiO2薄膜是众多氧化物半导体薄膜中研究最为广泛的一种材料.其表面的超亲水性和表面自清洁效应开辟了光催化薄膜功能材料的新的研究领域,已成为众多研究者研究的对象。但是如果薄膜仅由TiO2组成,当光照停止,水在TiO2薄膜表面的润湿角逐渐升高.并恢复原始状态。TiO2的禁带较宽,普通光线如太阳光等都不能将其激发.限制了其实际应用。因此如何使TiO2材料的光谱响应范围由紫外光反扩展到可见.光区一日如何更长时间地保持薄膜良好的亲水性是目前研究的重点。  相似文献   

15.
This paper presents a new sol-gel process to prepare molybdenum oxide thin films. A molybdenum acetylacetonate sol was prepared by employing the system CH3COCH2COCH3/MoO3/C6H5CH3/HOCH2CH2OCH3. A molybdenum acetylacetonate gel was prepared by addition of aqueous NH3. Thermal gravimetry (TG) and differential thermal analyses (DTA) of the gel suggested that crystallization of MoO3 occurs in a 140 K temperature range around 508°C. MoO3 films were prepared on fused silica, Si (111) and Al2O3 (012) substrates by annealing spin coating films of the sol in oxygen environment at 508°C. X-ray diffraction (XRD) showed that all films crystallize in -MoO3 structure, and crystallites on fused silica substrate are arbitrarily oriented while those on Si (111) and Al2O3(012) substrates oriented in the (010) direction. SEM investigations showed that MoO3 grains of all films are randomly distributed, with a longitudinal dimension of about 1–5 m and the film thickness is about 1 m.  相似文献   

16.
Flat and highly (111) oriented gold and silver films were prepared by physical vapour deposition (PVD) using optimized deposition parameters. On these films, which were characterized with atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), titanium dioxide films were deposited by electron beam evaporation and dip coating. Dip coating from titanium tetraisopropoxide solutions resulted in films with different morphology and coverage depending on the alkoxide concentration (0.009 mol/L – 0.60 mol/L) and the post-treatment. Scanning electron microscopy (SEM) and AFM revealed that the deposited TiO2 consists of amorphous, highly porous islands when the applied alkoxide concentration is high (0.05 mol/L – 0.6 mol/L). At higher temperatures these amorphous TiO2 islands sintered significantly and crystallized to anatase. In contrast, transparent TiO2 films were obtained from low concentrated alkoxide solutions (< 0.01 mol/L) which covered the whole substrate, similar to electron beam evaporated thin films. Sputter profiles with ion scattering spectroscopy (ISS) indicated that the film thickness is in the range of 2 nm when alkoxide solutions with a concentration of 9 mmol/L are used. The deposition of TiO2 by electron beam evaporation normally resulted in significantly reduced TiO2 films, completely oxidized ones were obtained when deposition was performed at elevated oxygen partial pressures (p(O2) > 2 × 10–5 mbar).  相似文献   

17.
Silver tantalate niobate films are candidates for temperature stable microwave dielectrics. In this work, a chemical solution deposition synthesis method was developed for Ag x (Ta0.5Nb0.5)O3−y films on Pt-coated Si substrates. Stable solutions with a range of silver stoichiometries were prepared using 2-methoxyethanol and pyridine as solvents, from AgNO3 and Nb and Ta ethoxide precursors. It was extremely difficult to prepare phase-pure perovskite films of Ag(Ta0.5Nb0.5)O3 on Pt-coated Si subtrates; instead a mixture of perovskite and natrotantite phases was identified. Such mixed phase films had dielectric constant ɛ r and dielectric loss tanδ values ranging from 200±20 to 270±25 and 0.006±0.002 to 0.002±0.001 at 100 kHz, respectively, depending on the firing temperature. For Ag2(Ta0.5Nb0.5)4O11, Ag0.8(Ta0.5Nb0.5)O2.9, Ag0.85(Ta0.5Nb0.5)O2.925 and Ag0.9(Ta0.5Nb0.5)O2.95 films, mainly the natrotantite phase was observed. The ɛ r values of these films were between 70±10 and 130±15 with tan δ values of 0.008±0.002 at 100 kHz.  相似文献   

18.
The present review reports on the preparation and atomic-scale characterization of the thinnest possible films of the glass-forming materials silica and germania. To this end state-of-the-art surface science techniques, in particular scanning probe microscopy, and density functional theory calculations have been employed. The investigated films range from monolayer to bilayer coverage where both, the crystalline and the amorphous films, contain characteristic XO4 (X=Si,Ge) building blocks. A side-by-side comparison of silica and germania monolayer, zigzag phase and bilayer films supported on Mo(112), Ru(0001), Pt(111), and Au(111) leads to a more general comprehension of the network structure of glass former materials. This allows us to understand the crucial role of the metal support for the pathway from crystalline to amorphous ultrathin film growth.  相似文献   

19.
Textured calcium modified (Pb,La)TiO3 (PLCT) films were deposited on Pt/Ti/SiO2/Si substrates by using a metal-organic decomposition (MOD) process. The PLCT films exhibit good ferroelectric properties, a very low leakage current and a sharp PLCT/Pt interface. The (100) texture of the PLCT film is growth-controlled; the (100) oriented grains grow preferentially so as to minimize the surface energy. Particularly, the (100) preferred orientation is easy to form in the PLCT film with a layered structure for which the substrate almost does not affect the nucleation and growth of the film.  相似文献   

20.
在N2/H2O混合气流中将硅片上金覆盖的金属铟颗粒加热到800 ℃制备出了不同形貌的In2O3纳米结构, 在距铟源不同距离处依次得到In2O3的八面体、纳米带、锯齿状纳米线和纳米链. 采用拉曼光谱、扫描电镜、X射线衍射和透射电镜对产物进行了表征分析. 结果表明, 八面体、纳米带、锯齿状纳米线和纳米链均为立方相单晶结构的In2O3. 基于气-固和气-液-固生长机理详细分析了八面体、纳米带、锯齿状纳米线和纳米链的生长过程, 提出了不同形貌In2O3纳米结构的生长模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号