首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The photoluminescence spectra of CuI single crystals have been studied at T = 4.2 K and at various excitation levels. The emission band of donor-acceptor pairs (DAP) with a maximum at about 4200 Å has been shown to possess a complex structure. Theoretical analyses and exciton spectroscopy data make it possible to calculate the ionization energies for the donors and acceptors participating in the formation of DAP, which are equal to ED = = 0.045?0.065 eV and EA = 0.155?0.170 eV, respectively. The fine structure of emission due to the annihilation of excitons bound on acceptor pairs (band maximum 4075 Å) has been detected and calculated. The energy of the longitudinal optical phonon participating in the exciton-phonon interaction (LO ? 18.7 meV) has been determined.  相似文献   

2.
Low-temperature photoluminescence (PL) of unactivated KDP crystals under selective synchrotron excitation is for the first time measured with subnanosecond time resolution. Time-resolved PL (2–6 eV) and PL excitation (4–35 eV) spectra, as well as PL kinetics, are measured at 7 K. From the acquired experimental data, luminescent bands related to intrinsic defects of the KDP lattice are identified; in particular, the long-wave band at 2.6 eV is assigned to L defects, and the band at 3.5–3.6 eV is attributed to D defects. An efficient energy transfer over the hydrogen sublattice is shown to take place in KDP at low temperatures. It results in the efficient excitation of L and D center photoluminescence in the fundamental absorption region, at electron transitions to the bottom levels of the conduction band, corresponding to the states of the hydrogen atom. The band gap E g is evaluated to be 8.0–8.8 eV.  相似文献   

3.
The spectral characteristics of ZnO:Ga and ZnO:Ga,N ceramics prepared by uniaxial hot pressing have been investigated. At room temperature, the edge (exciton) band at 3.12 eV dominates in the luminescence spectra of ZnO:Ga, while a wide luminescence band at 2.37 eV, which is likely to be due to zinc vacancies, is observed in the spectra of ZnO:Ga,N. Upon heating, the edge band maximum shifts to lower energies and the bandwidth increases. The extrapolated position of the edge-band maximum at zero temperature, E m (0) = 3.367 ± 0.005 eV, is in agreement with the data for thin zinc oxide films. The luminescence excitation spectra in the range from 3 to 6.5 eV are reported and the mechanism of energy transfer to excitons and luminescence centers is considered.  相似文献   

4.
This study has been carried out using synchrotron radiation, time-resolved luminescence ultraviolet and vacuum ultraviolet spectroscopy, optical absorption spectroscopy, and thermal activation spectroscopy. It has been found that, in scintillation spectrometric crystals LaBr3: Ce,Hf characterized by a low hygroscopicity, along with Ce3+ centers in regular lattice sites, there are Ce3+ centers located in the vicinity of the defects of the crystal structure. It has also been found that the studied crystals exhibit photoluminescence (PL) of new point defects responsible for a broad band at wavelengths of 500–600 nm in the PL spectra. The minimum energy of interband transitions in LaBr3 is estimated as E g ~ 6.2 eV. The effect of multiplication of electronic excitations has been observed in the range of PL excitation energies higher than 13 eV (more than 2E g ). Thermal activation studies have revealed channels of electronic excitation energy transfer to Ce3+ impurity centers.  相似文献   

5.
This paper reports on a study of the dynamics of electronic excitations in KBe2BO3F2 (KBBF) crystals by low-temperature luminescent vacuum ultraviolet spectroscopy with nanosecond time resolution under photoexcitation by synchrotron radiation. The first data have been obtained on the kinetics of photoluminescence (PL) decay, time-resolved PL spectra, time-resolved PL excitation spectra, and reflection spectra at 7 K; the estimation has been performed for the band gap E g = 10.6−11.0 eV; the predominantly excitonic mechanism for PL excitation at 3.88 eV has been identified; and defect luminescence bands at 3.03 and 4.30 eV have been revealed. The channels of generation and decay of electronic excitations in KBBF crystals have been discussed.  相似文献   

6.
The mechanisms of photoluminescence excitation of Mn2+ ions in ZnS crystals have been investigated on the basis of complex analysis of the temperature dependences of the photoluminescence and photoluminescence-excitation spectra of ZnS:Mn crystals. The activation energy of a manganese luminescence center was estimated at Ea = 0.17 ± 0.05 eV. It is shown that Ea represents an energy band with a width ΔEa = 0.1 eV, within which a manganese luminescence center can experience radiationless recombination. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 6, pp. 788–793, November–December, 2005.  相似文献   

7.
In this work, the photoelectric properties of gallium selenide (GaSe) monocrystals in the edge absorption region, with various configurations of current contacts, at low and high optical excitation levels are investigated. The photoconductivity spectrum behavior is determined by localized electronic and excitonic states along c-axis. It is shown that the localization of electronic and excitonic states in one-dimensional fluctuation potential along c-axis results to an anisotropy in photoconductivity spectrum at various current contacts configurations. At Ec the photoconductivity is observed in the  < Eg and  > Eg regions. In the case of hv < Eg, the maximum photoconductivity, in the impurity and exciton absorption region are observed at 1.975 eV and 2.102 eV, respectively. With rising of excitation energy level, suppression of photoconductivity in the exciton absorption region and increases in impurity absorption region is observed. At E||c contact configuration, the considerable photoconductivity is observed only in the impurity absorption region, which also increases with rising of excitation level. It is supposed that, suppression of photoconductivity in the exciton absorption region at high excitation levels is connected with exciton-exciton interaction, which results to a nonlinear light absorption. The results are compared with the absorption and photoluminescence measurements.  相似文献   

8.
Electroabsorption spectra of single crystals have been studied near the fundamental absorption edge at 77 and 300 K. At 300 K two positive peaks (2.34 and 2.42 eV) and a negative peak (2.38 eV) are observed in the electroabsorption spectrum. At liquid-nitrogen temperature a fine structure corresponding to the formation of a parabolic exciton (2.503 eV) is observed.Values of the width of the forbidden gap Eg, the n = 1 exciton positions, the exciton activation energy ΔEb, the effective Bohr radius aexc, the reduced effective mass of an electron-hole pair μ, and the exciton ionization field F(Eg = 2.535 eV, Eexc = 2.503 eV, Eb = 32 meV, aexc = 28AA;;;, μ = 0.15 m0, and F = 1.2 × 105 V cm-1) have been determined from the electroabsorption spectrum.  相似文献   

9.
The luminescence excitation spectra of localized excitons in GaSe0.85Te0.15 solid solutions have been investigated at the temperature T = 2 K. It has been shown that the excitation spectra of excitons with the localization energy ε > 10 mV exhibit an additional maximum M E located on the low-energy side of the maximum corresponding to the free exciton absorption band with n = 1. It has been found that the shift in the position of the maximum M E in the excitation spectrum with respect to the energy of detected photons increases as the energy of detected photons decreases, i.e., with an increase in the localization energy of excitons. Under the resonant excitation of localized excitons by a monochromatic light from the region of the exciton emission band, in the exciton luminescence spectrum on the low-energy side from the excitation line, there is also a maximum of the luminescence (M L ). The energy distance between the position of the excitation line and the position of the maximum in the luminescence spectrum increases with a decrease in the frequency of the excitation light. The possible mechanisms of the formation of the described structure of the luminescence excitation and exciton luminescence spectra of GaSe0.85Te0.15 have been considered. It has been concluded that the maximum M E in the excitation spectrum and the maximum M L in the luminescence spectrum are attributed to electronic–vibrational transitions with the creation and annihilation of localized excitons, respectively.  相似文献   

10.
Luminescence and thermally stimulated luminescence (TL) of BeO: Mg crystals are studied at T = 6–380 K. The TL glow curves and the spectra of luminescence (1.2–6.5 eV), luminescence excitation, and reflection (3.7–20 eV) are obtained. It is found that the introduction of an isovalent magnesium impurity into BeO leads to the appearance of three new broad luminescence bands at 6.2–6.3, 4.3–4.4, and 1.9–2.6 eV. The first two are attributed to the radiative annihilation of a relaxed near-impurity (Mg) exciton, the excited state of which is formed as a result of energy transfer by free excitons. The impurity VUV and UV bands are compared with those for the intrinsic luminescence of BeO caused by the radiative annihilation of self-trapped excitons (STE) of two kinds: the band at 6.2–6.3 eV of BeO: Mg is compared with the band at 6.7 eV (STE1) of BeO, and the band at 4.3–4.4 eV is compared with the band at 4.9 eV (STE2) of BeO. In the visible region, the luminescence spectrum is due to a superposition of intracenter transitions in an impurity complex including a magnesium ion. The manifestation of X-ray-induced luminescence bands at T = 6 K in BeO: Mg indicates their excitation during band-to-band transitions and in recombination processes. The energy characteristics of the impurity states in BeO: Mg are determined; the effect of the isovalent impurity on the fluctuation rearrangement of the BeO: Mg structure in the thermal transformation region of STE1 → STE2 is revealed.  相似文献   

11.
Excitation of donor-acceptor pair luminescence has been studied in CdTe doped with lithium or chlorine. The excitation spectrum of the lithium acceptor is determined and fitted with the effective mass theory of Baldereschi and Lipari. Revised values of the valence band parameters are deduced: μ = 0.8, δ = 0.054, Ry = 24 meV. The analysis of the 1.45 eV luminescence band in compensated Cl-doped crystals shows the existence of donor-acceptor pair transitions. Three acceptor centers are identified: EA = 89, 111 and 119 meV, and the contribution of a deep donor (ED > 40 meV) is demonstrated. Besides intracentre type excitation transitions of the 1.45 eV band have been observed in non-compensated chlorine-doped crystals. Thus several recombination channels and distinct acceptor states contribute to the composite 1.45 eV luminescence band.  相似文献   

12.
An investigation of resonant Raman scattering in mixed crystals of AgBr:Cl at 1.8 K shows that the zero-phonon and LO phonon-assisted exciton luminescence excited in the free indirect exciton absorption, exhibits an anomalous dependence on the exciton photon energy EL. Close to the exciton gap, the bands show a Raman-like behaviour with their peaks at constant energetic distance from EL. As EL is tuned further into the absorption, the bands gradually develop into normal photoluminescence. The effect is explained by taking into account exciton relaxation via scattering by long-wavelength acoustic phonons, a process which is strongly energy dependent. In addition, resonant Raman scattering observed for excitation in the zero-phonon absorption suggests study for the first time of the mode behaviour of certain off-zone center phonons in this system.  相似文献   

13.
The photoluminescence, photoconductivity and absorption in GaSe0.9Te0.1 alloy crystals have been investigated as a function of temperature and external electric field. It has been observed that the exciton peaks shift to lower energy in GaSe0.9Te0.1 alloy crystals compared to GaSe crystals. The long wavelength tails of interband photoluminescence, photoconductivity and absorption spectra are determined by the free exciton states and show an Urbach-Martienssen-type dependence to the photon energy. The maxima of the extrinsic photoluminescence and photoconductivity spectra were found to be determined by the acceptor centers with an energy of EA=EV+0.19 eV formed by the polytypism and defects complexes that include Se and Te anions.  相似文献   

14.
Samples of ZnTe showing near gap edge luminescence predominantly due to exciton recombination at shallow neutral acceptors and donor- acceptor pair recombination have been investigated using optically detected magnetic resonance (ODMR). Emission polarization changes at 2.318 eV were observed due to magnetic resonance of electrons at ge = + 0.401 ± 0.004. The observations are consistent with the donor trapped electron resonance resulting from microwave induced changes in donor-acceptor pair photoluminescence.  相似文献   

15.
Summary Measurements of photoluminescence and luminescence excitation spectra of ZnSiP2 have been performed at 4.2K and two results were obtained. One is the observation of a new sharp emission line at 1.980 eV, due to the bound exciton associated with the pseudodirect gap. The other is the observation of another new series of absorption lines in the luminescence excitation spectrum of an emission line, at 1.984 eV, in addition to those reported previously. These results indicate that in ZnSiP2 radiative transitions occur at both the indirect and the pseudodirect gaps. Paper presented at the ?V International Conference on Ternary and Multinary Compound?, held in Cagliari, September 14–16, 1982.  相似文献   

16.
The dynamics of electron excitations and luminescence of LiB3O5 (LBO) single crystals was studied using low-temperature luminescence vacuum ultraviolet spectroscopy with a subnanosecond time resolution under photoexcitation with synchrotron radiation. The kinetics of the photoluminescence (PL) decay, the time-resolved PL emission spectra, and the time-resolved PL excitation spectra of LBO were measured at 7 and 290 K, respectively. The PL emission bands peaking at 2.7 eV and 3.3 eV were attributed to the radiative transitions of electronic excitations connected with lattice defects of LBO. The intrinsic PL emission bands at 3.6 and 4.2 eV were associated with the radiative annihilation of two kinds of self-trapped electron excitations in LBO. The processes responsible for the formation of localized electron excitations in LBO were discussed and compared with those taking place in wide-gap oxides.  相似文献   

17.
The reflection and luminescence excitation spectra of CaF2 crystals containing europium ions in divalent (Eu2+) and trivalent (Eu3+) states were measured in the range from 4 to 16 eV. It was established that, in CaF2 : Eu3+ crystals, luminescence of Eu3+ ions (the f-f transitions) is effectively excited both in the charge-transfer band (at ~8 eV) and in the region of the 4f–5d transitions (at ~10 eV) but is virtually not excited in the fundamental region of the crystal (at an energy higher than 10.5 eV). Luminescence of Eu2+ ions (the 427-nm band) in CaF2 : Eu3+ is effectively excited in the fundamental region of the crystal; i.e., luminescence of divalent europium ions occurs through the trapping mechanism. Emission of Eu2+ ions in CaF2 : Eu2+ crystals is characterized by the excitation band at an energy of 5.6 eV (the 4f → 5d,t 2g transitions), as well as by the exciton and interband luminescence excitations. The results obtained and data available in the literature are used to construct the energy level diagram with the basic electron transitions in the CaF2 : Eu crystals.  相似文献   

18.
Photoluminescence excitation (PLE) spectra of deep acceptor states in ZnSe, for example the Cu-related luminescence band at ≈1.95 eV, contain a prominent excitation band at ≈3.25 eV. This band lies above the structure marking the lowest direct EO band gap Eg by the spin-orbit splitting energy Δ of the valence bands at Γ. The higher energy feature is either absent or greatly de-emphasised in the PLE spectra of shallow acceptor states in ZnSe and of the oxygen iso-electronic trap in ZnTe, where the electron rather than the hole is tightly bound. However, a significant PLE component at Eg + Δ is observed for deep acceptor-like states in ZnTe, where Δ is ≈0.95 eV. Efficient PLE at E + Δ for luminescence from deep acceptor-like states is shown to be consistent with the extended wave-vector contributions to the bound state wave-functions of holes of binding energies ≈Δ.  相似文献   

19.
It is reported that Auger-free (AF) luminescence appears with two bands at 4.5 and 6.3 eV in Rb2ZnCl4. This luminescence originates from a radiative transition of the Cl 3p valence electrons into the Zn 3d outermost-core holes. The present work is the first observation of AF luminescence due to interatomic p–d transitions in halide crystals. The appearance of two AF luminescence bands suggests the existence of two types of AF transitions following core hole creation. A largely Stokes-shifted luminescence band is also found to appear at 1.9 eV. This band has an excitation threshold at the fundamental absorption edge, and is ascribed to the radiative decay of a self-trapped exciton.  相似文献   

20.
Correlations of the luminescence intensity (the second-order correlation function g (2)(τ)), where τ is the delay time between the photons detected in pairs) under the conditions of the Bose-Einstein condensation (BEC) of dipolar excitons has been studied in a temperature range of 0.45–4.2 K. Photoexcited dipolar excitons have been accumulated in a lateral trap in a GaAs/AlGaAs Schottky diode with a 25-nm wide single quantum well with an electric bias applied across the heterolayers. Two-photon correlations have been measured with the use of a two-beam intensity interferometer with a time resolution of }~0.4 ns according to the well-known classical Hanbury-Brown-Twiss scheme. The photon bunching has been observed at the onset of Bose-Einstein condensation manifested by the appearance of a narrow exciton condensate line in the luminescence spectrum at an increase in the optical pumping (the line width near the threshold is ?200 μeV). At the same time, the two-photon correlation function itself obeys the super-Poisson distribution, g (2)(τ) > 1, at time scale τc ? 1 ns of the system coherence. The photon bunching is absent at a pumping level substantially below the condensation threshold. The effect of bunching also decreases at pumping significantly above the threshold, when the narrow exciton condensate line starts to dominate in the luminescence spectra, and finally disappears with the further increase in the optical excitation. In this region, the distribution of pair photon correlations is a Poisson distribution manifesting the united quantum coherent state of the exciton condensate. Under the same conditions, the first-order spatial correlation function g (1)(r) determined from the interference pattern of the luminescence signals from the spatially separated parts of the condensate at constant pumping remains noticeable at distances of no less than 4 μm. The discovered effect of photon bunching is very sensitive to temperature and decreases by several times with a temperature increase in the range of 0.45–4.2 K. Assuming that the luminescence of the dipolar excitons directly reflects the coherence properties of the gas of interacting excitons, the discovered photon bunching at the onset of condensation, where the fluctuations of the exciton density and, consequently, of the luminescence intensity are most significant, indicates a phase transition in the interacting Bose gas of excitons, which is an independent way of detecting the Bose-Einstein condensation of excitons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号