首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A numerical algorithm for the steady state solution of three‐dimensional incompressible flows is presented. A preconditioned time marching scheme is applied to the conservative form of the governing equations. The preconditioning matrix multiplies the time derivatives of the system and circumvents the eigenvalue‐caused stiffness at low speed. The formulation is suitable for constant density flows and for flows where the density depends on non‐passive scalars, such as in low‐speed combustion applications. The k–ε model accounts for turbulent transport effects. A cell‐centred finite volume formulation with a Runge–Kutta time stepping scheme for the primitive variables is used. Second‐order spatial accuracy is achieved by developing for the preconditioned system an approximate Riemann solver with MUSCL reconstruction. A multi‐grid technique coupled with local time stepping and implicit residual smoothing is used to accelerate the convergence to the steady state solution. The convergence behaviour and the validation of the predicted solutions are examined for laminar and turbulent constant density flows and for a turbulent non‐premixed flame simulated by a presumed probability density function (PDF) model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
A boundary element method for steady two‐dimensional low‐to‐moderate‐Reynolds number flows of incompressible fluids, using primitive variables, is presented. The velocity gradients in the Navier–Stokes equations are evaluated using the alternatives of upwind and central finite difference approximations, and derivatives of finite element shape functions. A direct iterative scheme is used to cope with the non‐linear character of the integral equations. In order to achieve convergence, an underrelaxation technique is employed at relatively high Reynolds numbers. Driven cavity flow in a square domain is considered to validate the proposed method by comparison with other published data. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
In the current study, numerical investigation of incompressible turbulent flow is presented. By the artificial compressibility method, momentum and continuity equations are coupled. Considering Reynolds averaged Navier–Stokes equations, the Spalart–Allmaras turbulence model, which has accurate results in two‐dimensional problems, is used to calculate Reynolds stresses. For convective fluxes a Roe‐like scheme is proposed for the steady Reynolds averaged Navier–Stokes equations. Also, Jameson averaging method was implemented. In comparison, the proposed characteristics‐based upwind incompressible turbulent Roe‐like scheme, demonstrated very accurate results, high stability, and fast convergence. The fifth‐order Runge–Kutta scheme is used for time discretization. The local time stepping and implicit residual smoothing were applied as the convergence acceleration techniques. Suitable boundary conditions have been implemented considering flow behavior. The problem has been studied at high Reynolds numbers for cross flow around the horizontal circular cylinder and NACA0012 hydrofoil. Results were compared with those of others and a good agreement has been observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper summarizes the method-of-lines (MOL) solution of the Navier–Stokes equations for an impulsively started incompressible laminar flow in a circular pipe with a sudden expansion. An intelligent higher-order spatial discretization scheme, which chooses upwind or downwind discretization in a zone-of-dependence manner when flow reversal occurs, was developed for separated flows. Stability characteristics of a linear advective–diffusive equation were examined to depict the necessity of such a scheme in the case of flow reversals. The proposed code was applied to predict the time development of an impulsively started flow in a pipe with a sudden expansion. Predictions were found to show the expected trends for both unsteady and steady states. This paper demonstrates the ease with which the Navier–Stokes equations can be solved in an accurate manner using sophisticated numerical algorithms for the solution of ordinary differential equations (ODEs). Solutions of the Navier–Stokes equations in primitive variables formulation by using the MOL and intelligent higher-order spatial discretization scheme are not available to date. © 1997 by John Wiley & Sons, Ltd.  相似文献   

5.
This work aims to model buoyant, laminar or turbulent flows, using a two‐dimensional incompressible smoothed particle hydrodynamics model with accurate wall boundary conditions. The buoyancy effects are modelled through the Boussinesq approximation coupled to a heat equation, which makes it possible to apply an incompressible algorithm to compute the pressure field from a Poisson equation. Based on our previous work [1], we extend the unified semi‐analytical wall boundary conditions to the present model. The latter is also combined to a Reynolds‐averaged Navier–Stokes approach to treat turbulent flows. The k ? ? turbulence model is used, where buoyancy is modelled through an additional term in the k ? ? equations like in mesh‐based methods. We propose a unified framework to prescribe isothermal (Dirichlet) or to impose heat flux (Neumann) wall boundary conditions in incompressible smoothed particle hydrodynamics. To illustrate this, a theoretical case is presented (laminar heated Poiseuille flow), where excellent agreement with the theoretical solution is obtained. Several benchmark cases are then proposed: a lock‐exchange flow, two laminar and one turbulent flow in differentially heated cavities, and finally a turbulent heated Poiseuille flow. Comparisons are provided with a finite volume approach using an open‐source industrial code. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
An implicit, upwind arithmetic scheme that is efficient for the solution of laminar, steady, incompressible, two-dimensional flow fields in a generalised co-ordinate system is presented in this paper. The developed algorithm is based on the extended flux-vector-splitting (FVS) method for solving incompressible flow fields. As in the case of compressible flows, the FVS method consists of the decomposition of the convective fluxes into positive and negative parts that transmit information from the upstream and downstream flow field respectively. The extension of this method to the solution of incompressible flows is achieved by the method of artificial compressibility, whereby an artificial time derivative of the pressure is added to the continuity equation. In this way the incompressible equations take on a hyperbolic character with pseudopressure waves propagating with finite speed. In such problems the ‘information’ inside the field is transmitted along its characteristic curves. In this sense, we can use upwind schemes to represent the finite volume scheme of the problem's governing equations. For the representation of the problem variables at the cell faces, upwind schemes up to third order of accuracy are used, while for the development of a time-iterative procedure a first-order-accurate Euler backward-time difference scheme is used and a second-order central differencing for the shear stresses is presented. The discretized Navier–Stokes equations are solved by an implicit unfactored method using Newton iterations and Gauss–Siedel relaxation. To validate the derived arithmetical results against experimental data and other numerical solutions, various laminar flows with known behaviour from the literature are examined. © 1997 John Wiley & Sons, Ltd.  相似文献   

7.
This paper uses a fourth‐order compact finite‐difference scheme for solving steady incompressible flows. The high‐order compact method applied is an alternating direction implicit operator scheme, which has been used by Ekaterinaris for computing two‐dimensional compressible flows. Herein, this numerical scheme is efficiently implemented to solve the incompressible Navier–Stokes equations in the primitive variables formulation using the artificial compressibility method. For space discretizing the convective fluxes, fourth‐order centered spatial accuracy of the implicit operators is efficiently obtained by performing compact space differentiation in which the method uses block‐tridiagonal matrix inversions. To stabilize the numerical solution, numerical dissipation terms and/or filters are used. In this study, the high‐order compact implicit operator scheme is also extended for computing three‐dimensional incompressible flows. The accuracy and efficiency of this high‐order compact method are demonstrated for different incompressible flow problems. A sensitivity study is also conducted to evaluate the effects of grid resolution and pseudocompressibility parameter on accuracy and convergence rate of the solution. The effects of filtering and numerical dissipation on the solution are also investigated. Test cases considered herein for validating the results are incompressible flows in a 2‐D backward facing step, a 2‐D cavity and a 3‐D cavity at different flow conditions. Results obtained for these cases are in good agreement with the available numerical and experimental results. The study shows that the scheme is robust, efficient and accurate for solving incompressible flow problems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
A new characteristic-based method for the solution of the 2D laminar incompressible Navier-Stokes equations is presented. For coupling the continuity and momentum equations, the artificial compressibility formulation is employed. The primitives variables (pressure and velocity components) are defined as functions of their values on the characteristics. The primitives variables on the characteristics are calculated by an upwind diffencing scheme based on the sign of the local eigenvalue of the Jacobian matrix of the convective fluxes. The upwind scheme uses interpolation formulae of third-order accuracy. The time discretization is obtained by the explicit Runge–Kutta method. Validation of the characteristic-based method is performed on two different cases: the flow in a simple cascade and the flow over a backwardfacing step.  相似文献   

9.
A unified numerical scheme for the solutions of the compressible and incompressible Navier-Stokes equations is investigated based on a time-derivative preconditioning algorithm. The primitive variables are pressure, velocities and temperature. The time integration scheme is used in conjunction with a finite volume discretization. The preconditioning is coupled with a high order implicit upwind scheme based on the definition of a Roe's type matrix. Computational capabilities are demonstrated through computations of high Mach number, middle Mach number, very low Mach number, and incompressible flow. It has also been demonstrated that the discontinuous surface in flow field can be captured for the implementation Roe's scheme.  相似文献   

10.
A unified numerical scheme for the solutions of the compressible and incompressible Navier-Stokes equations is investigated based on a time-derivative preconditioning algorithm. The primitive variables are pressure, velocities and temperature. The time integration scheme is used in conjunction with a finite volume discretization. The preconditioning is coupled with a high order implicit upwind scheme based on the definition of a Roe's type matrix. Computational capabilities are demonstrated through computations of high Mach number, middle Mach number, very low Mach number, and incompressible flow. It has also been demonstrated that the discontinuous surface in flow field can be captured for the implementation Roe's scheme.  相似文献   

11.
This paper presents a finite element solution algorithm for three‐dimensional isothermal turbulent flows for mold‐filling applications. The problems of interest present unusual challenges for both the physical modelling and the solution algorithm. High‐Reynolds number transient turbulent flows with free surfaces have to be computed on complex three‐dimensional geometries. In this work, a segregated algorithm is used to solve the Navier–Stokes, turbulence and front‐tracking equations. The streamline–upwind/Petrov–Galerkin method is used to obtain stable solutions to convection‐dominated problems. Turbulence is modelled using either a one‐equation turbulence model or the κ–ε two‐equation model with wall functions. Turbulence equations are solved for the natural logarithm of the turbulence variables. The change of dependent variables allows for a robust solution algorithm and good predictions even on coarse meshes. This is very important in the case of large three‐dimensional applications for which highly refined meshes result in untreatable large numbers of elements. The position of the flow front in the mold cavity is computed using a level set approach. Finally, equations are integrated in time using an implicit Euler scheme. The methodology presents the robustness and cost effectiveness needed to tackle complex industrial applications. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a novel multidimensional characteristic‐based (MCB) upwind method for the solution of incompressible Navier–Stokes equations. As opposed to the conventional characteristic‐based (CB) schemes, it is genuinely multidimensional in that the local characteristic paths, along which information is propagated, are used. For the first time, the multidimensional characteristic structure of incompressible flows modified by artificial compressibility is extracted and used to construct an inherent multidimensional upwind scheme. The new proposed MCB scheme in conjunction with the finite‐volume discretization is employed to model the convective fluxes. Using this formulation, the steady two‐dimensional incompressible flow in a lid‐driven cavity is solved for a wide range of Reynolds numbers. It was found that the new proposed scheme presents more accurate results than the conventional CB scheme in both their first‐ and second‐order counterparts in the case of cavity flow. Also, results obtained with second‐order MCB scheme in some cases are more accurate than the central scheme that in turn provides exact second‐order discretization in this grid. With this inherent upwinding technique for evaluating convective fluxes at cell interfaces, no artificial viscosity is required even at high Reynolds numbers. Another remarkable advantage of MCB scheme lies in its faster convergence rate with respect to the CB scheme that is found to exhibit substantial delays in convergence reported in the literature. The results obtained using new proposed scheme are in good agreement with the standard benchmark solutions in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
A numerical method has been developed to solve the steady and unsteady incompressible Navier-Stokes equations in a two-dimensional, curvilinear coordinate system. The solution procedure is based on the method of artificial compressibility and uses a third-order flux-difference splitting upwind differencing scheme for convective terms and second-order center difference for viscous terms. A time-accurate scheme for unsteady incompressible flows is achieved by using an implicit real time discretization and a dual-time approach, which introduces pseudo-unsteady terms into both the mass conservation equation and momentum equations. An efficient fully implicit algorithm LU-SGS, which was originally derived for the compressible Eulur and Navier-Stokes equations by Jameson and Toon [1], is developed for the pseudo-compressibility formulation of the two dimensional incompressible Navier-Stokes equations for both steady and unsteady flows. A variety of computed results are presented to validate the present scheme. Numerical solutions for steady flow in a square lid-driven cavity and over a backward facing step and for unsteady flow in a square driven cavity with an oscillating lid and in a circular tube with a smooth expansion are respectively presented and compared with experimental data or other numerical results.  相似文献   

14.
A new numerical procedure for solving the two‐dimensional, steady, incompressible, viscous flow equations on a staggered Cartesian grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well‐established numerical formulations, the finite difference and finite volume methods. Some weaknesses of the finite difference approach are removed by exploiting the strengths of the finite volume method. In particular, the issue of velocity–pressure coupling is dealt with in the proposed finite difference formulation by developing a pressure correction equation using the SIMPLE approach commonly used in finite volume formulations. However, since this is purely a finite difference formulation, numerical approximation of fluxes is not required. Results presented in this paper are based on first‐ and second‐order upwind schemes for the convective terms. This new formulation is validated against experimental and other numerical data for well‐known benchmark problems, namely developing laminar flow in a straight duct, flow over a backward‐facing step, and lid‐driven cavity flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
SUMMARY

A new numerical method is developed for the two-dimensional, steady Navier-Stokes equations. Using local polynomial expansions to represent the discrete primitive variables on each cell, we construct a scheme which has the following properties: First, the local discrete primitive variables are functional solutions of both the integral and differential forms of the Navier-Stokes equations. Second, fluxes are balanced across cell interfaces using exact functional expressions (to the order of accuracy of the local expansions). No interpolation, flux models, or flux limiters are required. Third, local and global conservation of mass, momentum, and energy are explicitly provided for. Finally, the discrete primitive variables and their derivatives are treated in a unified and consistent manner. All are treated as unknowns to be solved together for simulating the local and global flux conservation.

A general third-order formulation for the steady, compressible Navier-Stokes equations is presented. As a special case, the formulation is applied to incompressible flow, and a Newton's method scheme is developed for the solution of laminar channel flow. H is shown that, at Reynolds numbers of 100, 1000, and 2000, the developing channel flow boundary layer can be accurately resolved using as few as six to ten cells per channel width.  相似文献   

16.
Predictions were performed for two different confined swirling flows with internal recirculation zones. The convection terms in the elliptic governing equations were discretized using three different finite differencing schemes: hybrid, quadratic upwind interpolation and skew upwind differencing. For each flow case, calculations were carried out with these schemes and successively refined grids were employed. For the turbulent flow case the k-ε turbulence model was used. The predicted cases were a laminar swirling flow investigated by Bornstein and Escudier, and a turbulent low-swirl case studied by Roback and Johnson. In both cases an internal recirculation zone was present. The laminar case is well predicted when account is taken of the estimated radial velocity component at the chosen inlet plane. The quadratic upwind interpolation and skew upwind schemes predict the main features of the internal recirculation zone also with a coarse grid. The turbulent case is well predicted with the coarse as well as the finer grids, the skew upwind and quadratic upwind interpolation schemes yielding results very close to the measurements. It is concluded that the skew upwind scheme reaches grid independence slightly before the quadratic upwind scheme, both considerably earlier than the hybrid scheme.  相似文献   

17.
A numerical method for the efficient calculation of three‐dimensional incompressible turbulent flow in curvilinear co‐ordinates is presented. The mathematical model consists of the Reynolds averaged Navier–Stokes equations and the k–ε turbulence model. The numerical method is based on the SIMPLE pressure‐correction algorithm with finite volume discretization in curvilinear co‐ordinates. To accelerate the convergence of the solution method a full approximation scheme‐full multigrid (FAS‐FMG) method is utilized. The solution of the k–ε transport equations is embedded in the multigrid iteration. The improved convergence characteristic of the multigrid method is demonstrated by means of several calculations of three‐dimensional flow cases. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
This paper combines the pseudo‐compressibility procedure, the preconditioning technique for accelerating the time marching for stiff hyperbolic equations, and high‐order accurate central compact scheme to establish the code for efficiently and accurately solving incompressible flows numerically based on the finite difference discretization. The spatial scheme consists of the sixth‐order compact scheme and 10th‐order numerical filter operator for guaranteeing computational stability. The preconditioned pseudo‐compressible Navier–Stokes equations are marched temporally using the implicit lower–upper symmetric Gauss–Seidel time integration method, and the time accuracy is improved by the dual‐time step method for the unsteady problems. The efficiency and reliability of the present procedure are demonstrated by applications to Taylor decaying vortices phenomena, double periodic shear layer rolling‐up problem, laminar flow over a flat plate, low Reynolds number unsteady flow around a circular cylinder at Re = 200, high Reynolds number turbulence flow past the S809 airfoil, and the three‐dimensional flows through two 90°curved ducts of square and circular cross sections, respectively. It is found that the numerical results of the present algorithm are in good agreement with theoretical solutions or experimental data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the unsteady three‐dimensional boundary layer flow due to a stretching surface in a viscous and incompressible micropolar fluid is considered. The partial differential equations governing the unsteady laminar boundary layer flow are solved numerically using an implicit finite‐difference scheme. The numerical solutions are obtained which are uniformly valid for all dimensionless time from initial unsteady‐state flow to final steady‐state flow in the whole spatial region. The equations for the initial unsteady‐state flow are also solved analytically. It is found that there is a smooth transition from the small‐time solution to the large‐time solution. The features of the flow for different values of the governing parameters are analyzed and discussed. The solutions of interest for the skin friction coefficient with various values of the stretching parameter c and material parameter K are presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
不可压N-S方程高效算法及二维槽道湍流分析   总被引:6,自引:1,他引:5  
构造了基于非等距网格的迎风紧致格式,并将其与三阶精度的Adams半隐方法相结合,构造了求解不可压N-S方程高效算法。该算法利用基于交错网格的离散形式的压力Poisson方程求解压力项,解决了边界处的残余散度问题;同时还利用快速Fourier变换将方程的隐式部分解耦,离散后的代数方程组利用追赶法求解,大大减少了计算量。通过对二维槽道流动的数值模拟,证实了所构造的数值方法具有精度高,稳定性好,能抑制混淆误差等优点,同时具有很高的计算效率,是进行壁湍流直接数值模拟的有效方法。在数值模拟的基础上对二维槽道流动进行了分析,得到了Reynolds数从6000到15000的二维流动饱和态解(所谓“二维槽道湍流”);定性及定量结果均与他人的数值计算结果吻合十分理想。对流场进行了分析,指出了“二维湍流”与三维湍流统计特性的区别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号