首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The mineral allactite [Mn(7)(AsO(4))(2)(OH)(8)] is a basic manganese arsenate which is highly pleochroic. The use of the 633 nm excitation line enables quality spectra of to be obtained irrespective of the crystal orientation. The mineral is characterised by a set of sharp bands in the 770-885 cm(-1) region. Intense and sharp Raman bands are observed at 883, 858, 834, 827, 808 and 779 cm(-1). Collecting the spectral data at 77K enabled better band separation with narrower bandwidths. The observation of multiple AsO(4) stretching bands indicates the non-equivalence of the arsenate anions in the allactite structure. In comparison the infrared spectrum shows a broad spectral profile with a series of difficult to define overlapping bands. The low wavenumber region sets of bands which are assigned to the nu(2) modes (361 and 359 cm(-1)), the nu(4) modes (471, 452 and 422 cm(-1)), AsO stretching vibrations at 331 and 324 cm(-1), and bands at 289 and 271 cm(-1) which may be ascribed to MnO stretching modes. The observation of multiple bands shows the loss of symmetry of the AsO(4) units and the non-equivalence of these units in the allactite structure. The study shows that highly pleochroic minerals can be studied by Raman spectroscopy.  相似文献   

2.
Raman microscopy has been used to study the molecular structure of a synthetic goudeyite (YCu(6)(AsO(4))(3)(OH)(6) x 3H(2)O). These types of minerals have a porous framework similar to that of zeolites with a structure based upon (A(3+))(1-x)(A(2+))(x)Cu(6)(OH)(6)(AsO(4))(3-x)(AsO(3)OH)(x). Two sets of AsO stretching vibrations were found and assigned to the vibrational modes of AsO(4) and HAsO(4) units. Two Raman bands are observed in the region 885-915 and 867-870 cm(-1) region and are assigned to the AsO stretching vibrations of (HAsO(4))(2-) and (H(2)AsO(4))(-) units. The position of the bands indicates a C(2v) symmetry of the (H(2)AsO(4))(-) anion. Two bands are found at around 800 and 835 cm(-1) and are assigned to the stretching vibrations of uncomplexed (AsO(4))(3-) units. Bands are observed at around 435, 403 and 395 cm(-1) and are assigned to the nu(2) bending modes of the HAsO(4) (434 and 400 cm(-1)) and the AsO(4) groups (324 cm(-1)).  相似文献   

3.
Raman spectroscopy has been used to study the tellurite minerals spiroffite and carlfriesite, which are minerals of formula type A(2)(X(3)O(8)) where A is Ca(2+) for the mineral carlfriesite and is Zn(2+) and Mn(2+) for the mineral spiroffite. Raman bands for spiroffite observed at 721 and 743 cm(-1), and 650 cm(-1) are attributed to the nu(1) (Te(3)O(8))(2-) symmetric stretching mode and the nu(3) (Te(3)O(8))(2-) antisymmetric stretching modes, respectively. A second spiroffite mineral sample provided a Raman spectrum with bands at 727 cm(-1) assigned to the nu(1) (Te(3)O(8))(2-) symmetric stretching modes and the band at 640cm(-1) accounted for by the nu(3) (Te(3)O(8))(2-) antisymmetric stretching mode. The Raman spectrum of carlfriesite showed an intense band at 721 cm(-1). Raman bands for spiroffite, observed at (346, 394) and 466 cm(-1) are assigned to the (Te(3)O(8))(2-)nu(2) (A(1)) bending mode and nu(4) (E) bending modes. The Raman spectroscopy of the minerals carlfriesite and spiroffite are difficult because of the presence of impurities and other diagenetically related tellurite minerals.  相似文献   

4.
Raman spectroscopy has been used to identify whether or not a selection of minerals labelled as mixites (formula BiCu6(AsO4)3(OH)6.3H2O) are correctly marked. Of the four samples, two samples are shown to be potentially mixites because of the presence of the characteristic Raman spectra of (AsO4)3- units and (HAsO4)- units, characterised by bands at around 803 and 833 cm(-1). Two of the minerals are shown to be predominantly carbonates. Bands are observed at 3473.9 and 3470.3 cm(-1) for the two mixite samples. Bands observed in the region 880-910 cm(-1) and in the 867-870 cm(-1) region are assigned to the AsO stretching vibrations of (HAsO4)2- and (H2AsO4)- units. Whilst bands at around 803 and 833 cm(-1) are assigned to the stretching vibrations of uncomplexed (AsO4)3- units. Intense bands observed at 473.7 and 475.4 cm(-1) are assigned to the nu4 bending mode of AsO4 units. Bands observed at around 386.5, 395.3 and 423.1 cm(-1) are assigned to the nu2 bending modes of the HAsO4 (434 and 400 cm(-1)) and the AsO4 groups (324 cm(-1)). Raman spectroscopy lends itself to the identification of minerals on host matrices and is especially useful for the identification of mixites.  相似文献   

5.
The mineral arsentsumebite Pb(2)Cu(AsO(4))(SO(4))(OH), a copper arsenate-sulphate hydroxide of the brackebuschite group has been characterised by Raman spectroscopy. The brackebuschite mineral group are a series of monoclinic arsenates, phosphates and vanadates of the general formula A(2)B(XO(4))(OH,H(2)O), where A may be Ba, Ca, Pb, Sr, while B may be Al, Cu(2+),Fe(2+), Fe(3+), Mn(2+), Mn(3+), Zn and XO(4) may be AsO(4), PO(4), SO(4),VO(4). Bands are assigned to the stretching and bending modes of SO(4)(2-) AsO(4)(3-) and HOAsO(3) units. Raman spectroscopy readily distinguishes between the two minerals arsentsumebite and tsumebite. Raman bands attributed to arsenate are not observed in the Raman spectrum of tsumebite. Phosphate bands found in the Raman spectrum of tsumebite are not found in the Raman spectrum of arsentsumebite. Raman spectroscopy readily distinguishes the two minerals tsumebite and arsentsumebite.  相似文献   

6.
Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the determination of the structure of these minerals. Among this group of minerals is pitticite, simply described as (Fe, AsO(4), SO(4), H(2)O). In this work, the analogue of the mineral pitticite has been synthesised. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO(4)(3-), SO(4)(2-) and water stretching and bending vibrations. The Raman spectrum of the pitticite analogue shows intense peaks at 845 and 837cm(-1) assigned to the AsO(4)(3-) stretching vibrations. Raman bands at 1096 and 1182cm(-1) are attributed to the SO(4)(2-) antisymmetric stretching bands. Raman spectroscopy offers a useful method for the analysis of such colloidal minerals.  相似文献   

7.
Raman spectroscopy at 298 and 77K has been used to study the mineral kamotoite-(Y), a uranyl rare earth carbonate mineral of formula Y(2)(UO(2))(4)(CO(3))(3)(OH)(8).10-11H(2)O. The mineral is characterised by two Raman bands at 1130.9 and 1124.6 cm(-1) assigned to the nu(1) symmetric stretching mode of the (CO(3))(2-) units, while those at 1170.4 and 862.3 cm(-1) (77K) to the deltaU-OH bending vibrations. The assignment of the two bands at 814.7 and 809.6 cm(-1) is difficult because of the potential overlap between the symmetric stretching modes of the (UO(2))(2+) units and the nu(2) bending modes of the (CO(3))(2-) units. Only a single band is observed in the 77K spectrum at 811.6 cm(-1). One possible assignment is that the band at 814.7 cm(-1) is attributable to the nu(1) symmetric stretching mode of the (UO(2))(2+) units and the second band at 809.6 cm(-1) is due to the nu(2) bending modes of the (CO(3))(2-) units. Bands observed at 584 and 547.3 cm(-1) are attributed to water librational modes. An intense band at 417.7 cm(-1) resolved into two components at 422.0 and 416.6 cm(-1) in the 77K spectrum is assigned to an Y(2)O(2) stretching vibration. Bands at 336.3, 286.4 and 231.6 cm(-1) are assigned to the nu(2) (UO(2))(2+) bending modes. U-O bond lengths in uranyl are calculated from the wavenumbers of the uranyl symmetric stretching vibrations. The presence of symmetrically distinct uranyl and carbonate units in the crystal structure of kamotoite-(Y) is assumed. Hydrogen-bonding network related to the presence of water molecules and hydroxyls is shortly discussed.  相似文献   

8.
Raman spectroscopy complimented with infrared spectroscopy has been used to study the mineral stitchtite, a hydrotalcite of formula Mg6Cr2(CO3)(OH)16.4H2O. Two bands are observed at 1087 and 1067 cm(-1) with an intensity ratio of approximately 2.5/1 and are attributed to the symmetric stretching vibrations of the carbonate anion. The observation of two bands is attributed to two species of carbonate in the interlayer, namely weakly hydrogen bonded and strongly hydrogen bonded. Two infrared bands are found at 1457 and 1381 cm(-1) and are assigned to the antisymmetric stretching modes. These bands were not observed in the Raman spectrum. Two infrared bands are observed at 744 and 685 cm(-1) and are assigned to the nu4 bending modes. Two Raman bands were observed at 539 and 531 cm(-1) attributed to the nu2 bending modes. Importantly the band positions of the paragenically related hydrotalcites stitchtite, iowaite, pyroaurite and reevesite all of which contain the carbonate anion occur at different wavenumbers. Consequently, Raman spectroscopy can be used to distinguish these minerals, particularly in the field where many of these hydrotalcites occur simultaneously in ore zones.  相似文献   

9.
ThermoRaman spectroscopy has been used to study the molecular structure and thermal decomposition of kintoreite, a phosphated jarosite PbFe3(PO4)2(OH,H2O)6. Infrared spectroscopy shows the presence of significant amounts of water in the structure as well as hydroxyl units. In contrast, no water was observed for segnitite (the arsenojarosite) as determined by infrared spectroscopy. The Raman spectra at 77 K exhibit bands at 974.6, 1003.2 and 866.5 cm(-1). These bands are attributed to the symmetric stretching vibrations of (PO4)3-, (SO4)3- and (AsO4)3- units. Raman spectroscopy confirms the presence of both arsenate and phosphate in the structure. Bands at 583.7 and 558.1 cm(-1) in the 77 K spectrum are assigned to the nu4 (PO4)3- bending modes. ThermoRaman spectroscopy of kintoreite identifies the temperature range of dehydration and dehydroxylation.  相似文献   

10.
Raman and infrared spectroscopy has been used to study the structure of selected vanadates including pascoite, huemulite, barnesite, hewettite, metahewettite, hummerite. Pascoite, rauvite and huemulite are examples of simple salts involving the decavanadates anion (V10O28)6-. Decavanadate consists of four distinct VO6 units which are reflected in Raman bands at the higher wavenumbers. The Raman spectra of these minerals are characterised by two intense bands at 991 and 965 cm(-1). Four pascoite Raman bands are observed at 991, 965, 958 and 905 cm(-1) and originate from four distinct VO6 sites. The other minerals namely barnesite, hewettite, metahewettite and hummerite have similar layered structures to the decavanadates but are based upon (V5O14)3- units. Barnesite is characterised by a single Raman band at 1010 cm(-1), whilst hummerite has Raman bands at 999 and 962 cm(-1). The absence of four distinct bands indicates the overlap of the vibrational modes from two of the VO6 sites. Metarossite is characterised by a strong band at 953 cm(-1). These bands are assigned to nu1 symmetric stretching modes of (V6O16)2- units and terminal VO3 units. In the infrared spectra of these minerals, bands are observed in the 837-860 cm(-1) and in the 803-833 cm(-1) region. In some of the Raman spectra bands are observed for pascoite, hummerite and metahewettite in similar positions. These bands are assigned to nu3 antisymmetric stretching of (V10O28)6- units or (V5O14)3- units. Because of the complexity of the spectra in the low wavenumber region assignment of bands is difficult. Bands are observed in the 404-458 cm(-1) region and are assigned to the nu2 bending modes of (V10O28)6- units or (V5O14)3- units. Raman bands are observed in the 530-620 cm(-1) region and are assigned to the nu4 bending modes of (V10O28)6- units or (V5O14)3- units. The Raman spectra of the vanadates in the low wavenumber region are complex with multiple overlapping bands which are probably due to VO subunits and MO bonds.  相似文献   

11.
Some minerals are colloidal and are poorly diffracting. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of minerals. Among this group of minerals is zykaite with formula Fe(4)(AsO(4))(SO(4))(OH)·15H(2)O. The objective of this research is to determine the molecular structure of the mineral zykaite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO(4)(3-), SO(4)(2-) and water stretching vibrations. The sharp band at 3515 cm(-1) is assigned to the stretching vibration of the OH units. This mineral offers a mechanism for the formation of more crystalline minerals such as scorodite and bukovskyite. Arsenate ions can be removed from aqueous systems through the addition of ferric compounds such as ferric chloride. This results in the formation of minerals such as zykaite and pitticite (Fe(3+), AsO(4), SO(4), H(2)O).  相似文献   

12.
Raman spectroscopy at 298 and 77K has been used to study the secondary uranyl mineral johannite of formula (Cu(UO2)2(SO4)2(OH)2 x 8H2O). Four Raman bands are observed at 3593, 3523, 3387 and 3234cm(-1) and four infrared bands at 3589, 3518, 3389 and 3205cm(-1). The first two bands are assigned to OH- units (hydroxyls) and the second two bands to water units. Estimations of the hydrogen bond distances for these four bands are 3.35, 2.92, 2.79 and 2.70 A. A sharp intense band at 1042 cm(-1) is attributed to the (SO4)2- symmetric stretching vibration and the three Raman bands at 1147, 1100 and 1090cm(-1) to the (SO4)2- anti-symmetric stretching vibrations. The nu2 bending modes were at 469, 425 and 388 cm(-1) at 77K confirming the reduction in symmetry of the (SO4)2- units. At 77K two bands at 811 and 786 cm(-1) are attributed to the nu1 symmetric stretching modes of the (UO2)2+ units suggesting the non-equivalence of the UO bonds in the (UO2)2+ units. The band at 786cm(-1), however, may be related to water molecules libration modes. In the 77K Raman spectrum, bands are observed at 306, 282, 231 and 210cm(-1) with other low intensity bands found at 191, 170 and 149cm(-1). The two bands at 282 and 210 cm(-1) are attributed to the doubly degenerate nu2 bending vibration of the (UO2)2+ units. Raman spectroscopy can contribute significant knowledge in the study of uranyl minerals because of better band separation with significantly narrower bands, avoiding the complex spectral profiles as observed with infrared spectroscopy.  相似文献   

13.
Uranyl micas are based upon (UO(2)PO(4))(-) units in layered structures with hydrated counter cations between the interlayers. Uranyl micas also known as the autunite minerals are of general formula M(UO2)2(XO4)2 x 8-12H2O where M may be Ba, Ca, Cu, Fe(2+), Mg, Mn(2+) or 1/2(HA1) and X is As or P. The structures of these minerals have been studied using Raman microscopy at 298 and 77K. Six hydroxyl stretching bands are observed of which three are highly polarised. The hydroxyl stretching vibrations are related to the strength of hydrogen bonding of the water OH units. Bands in the Raman spectrum of autunite at 998, 842 and 820 cm(-1) are highly polarised. Low intensity band at 915 cm(-1) is attributed to the nu(3) antisymmetric stretching vibration of (UO(2))(2+) units. The band at 820 cm(-1) is attributed to the nu(1) symmetric stretching mode of the (UO(2))(2+) units. The (UO(2))(2+) bending modes are found at 295 and 222 m(-1). The presence of phosphate and arsenate anions and their isomorphic substitution are readily determined by Raman spectroscopy. The collection of Raman spectra at 77K enables excellent band separation.  相似文献   

14.
Minerals in the rosasite group namely rosasite, glaucosphaerite, kolwezite, mcguinnessite have been studied by a combination of infrared and Raman spectroscopy. The spectral patterns for the minerals rosasite, glaucosphaerite, kolwezite and mcguinnessite are similar to that of malachite implying the molecular structure is similar to malachite. A comparison is made with the spectrum of malachite. The rosasite mineral group is characterised by two OH stretching vibrations at approximately 3401 and 3311 cm-1. Two intense bands observed at approximately 1096 and 1046 cm-1 are assigned to nu1(CO3)2- symmetric stretching vibration and the delta OH deformation mode. Multiple bands are found in the 800-900 and 650-750 cm-1 regions attributed to the nu2 and nu4 bending modes confirming the symmetry reduction of the carbonate anion in the rosasite mineral group as C2v or Cs. A band at approximately 560 cm-1 is assigned to a CuO stretching mode.  相似文献   

15.
Tellurites may be subdivided according to formula and structure. There are five groups based upon the formulae (a) A(XO3), (b) A(XO3).xH2O, (c) A2(XO3)3.xH2O, (d) A2(X2O5) and (e) A(X3O8). Raman spectroscopy has been used to study rajite and denningite, examples of group (d). Minerals of the tellurite group are porous zeolite-like materials. Raman bands for rajite observed at 740, and 676 and 667 cm(-1) are attributed to the nu1 (Te2O5)(2-) symmetric stretching mode and the nu3 (TeO3)(2-) antisymmetric stretching modes, respectively. A second rajite mineral sample provided a more complex Raman spectrum with Raman bands at 754 and 731 cm(-1) assigned to the nu1 (Te2O5)(2-) symmetric stretching modes and two bands at 652 and 603 cm(-1) are accounted for by the nu3 (Te2O5)(2-) antisymmetric stretching mode. The Raman spectrum of dennigite displays an intense band at 734 cm(-1) attributed to the nu1 (Te2O5)(2-) symmetric stretching mode with a second Raman band at 674 cm(-1) assigned to the nu3 (Te2O5)(2-) antisymmetric stretching mode. Raman bands for rajite, observed at (346, 370) and 438 cm(-1) are assigned to the (Te2O5)(2-)nu2 (A1) bending mode and nu4 (E) bending modes.  相似文献   

16.
The Raman spectrum of atelestite Bi2O(OH)(AsO4), a hydroxy-arsenate mineral containing bismuth, has been studied in terms of spectra-structure relations. The studied spectrum is compared with the Raman spectrum of atelestite downloaded from the RRUFF database. The sharp intense band at 834 cm(-1) is assigned to the ν1 AsO4(3-) (A1) symmetric stretching mode and the three bands at 767, 782 and 802 cm(-1) to the ν3 AsO4(3-) antisymmetric stretching modes. The bands at 310, 324, 353, 370, 395, 450, 480 and 623 cm(-1) are assigned to the corresponding ν4 and ν2 bending modes and BiOBi (vibration of bridging oxygen) and BiO (vibration of non-bridging oxygen) stretching vibrations. Lattice modes are observed at 172, 199 and 218 cm(-1). A broad low intensity band at 3095 cm(-1) is attributed to the hydrogen bonded OH units in the atelestite structure. A weak band at 1082 cm(-1) is assigned to δ(BiOH) vibration.  相似文献   

17.
Raman spectroscopy has enabled insights into the molecular structure of the richelsdorfite Ca(2)Cu(5)Sb[Cl|(OH)(6)|(AsO(4))(4)]·6H(2)O. This mineral is based upon the incorporation of arsenate or phosphate with chloride anion into the structure and as a consequence the spectra reflect the bands attributable to these anions, namely arsenate or phosphate and chloride. The richelsdorfite Raman spectrum reflects the spectrum of the arsenate anion and consists of ν(1) at 849, ν(2) at 344 cm(-1), ν(3) at 835 and ν(4) at 546 and 498 cm(-1). A band at 268 cm(-1) is attributed to CuO stretching vibration. Low wavenumber bands at 185 and 144 cm(-1) may be assigned to CuCl TO/LO optic vibrations.  相似文献   

18.
Infrared emission and infrared spectroscopy has been used to study a series of selected natural smithsonites from different origins. An intense broad infrared band at 1440cm(-1) is assigned to the nu(3) CO(3)(2-) antisymmetric stretching vibration. An additional band is resolved at 1335cm(-1). An intense sharp Raman band at 1092cm(-1) is assigned to the CO(3)(2-) symmetric stretching vibration. Infrared emission spectra show a broad antisymmetric band at 1442cm(-1) shifting to lower wavenumbers with thermal treatment. A band observed at 870cm(-1) with a band of lesser intensity at 842cm(-1) shifts to higher wavenumbers upon thermal treatment and is observed at 865cm(-1) at 400 degrees C and is assigned to the CO(3)(2-)nu(2) mode. No nu(2) bending modes are observed in the Raman spectra for smithsonite. The band at 746cm(-1) shifts to 743cm(-1) at 400 degrees C and is attributed to the CO(3)(2-)nu(4) in phase bending modes. Two infrared bands at 744 and around 729cm(-1) are assigned to the nu(4) in phase bending mode. Multiple bands may be attributed to the structural distortion ZnO(6) octahedron. This structural distortion is brought about by the substitution of Zn by some other cation. A number of bands at 2499, 2597, 2858, 2954 and 2991cm(-1) in both the IE and infrared spectra are attributed to combination bands.  相似文献   

19.
The mineral delvauxite CaFe(4)(3+)(PO(4),SO(4))(2)(OH)(8)·4-6H(2)O has been characterised by Raman spectroscopy and infrared spectroscopy. The mineral is associated with the minerals diadochite and destinezite. Delvauxite appears to vary in crystallinity from amorphous to semi-crystalline. The mineral is often X-ray non-diffracting. The minerals are found in soils and may be described as 'colloidal' minerals. Vibrational spectroscopy enables determination of the molecular structure of delvauxite. Bands are assigned to phosphate and sulphate stretching and bending modes. Two symmetric stretching modes for both the phosphate and sulphate symmetric stretching modes support the concept of non-equivalent phosphate and sulphate units in the mineral structure. Multiple water bending and stretching modes imply that non-equivalent water molecules in the structure exist with different hydrogen bond strengths.  相似文献   

20.
Raman spectroscopy has been used to study the molecular structure of a series of selected uranyl silicate minerals including weeksite K2[(UO2)2(Si5O13)].H2O, soddyite [(UO2)2SiO4.2H2O] and haiweeite Ca[(UO2)2(Si5O12(OH)2](H2O)3 with UO2(2+)/SiO2 molar ratio 2:1 or 2:5. Raman spectra clearly show well resolved bands in the 750-800 cm(-1) region and in the 950-1000 cm(-1) region assigned to the nu1 modes of the (UO2)2+ units and to the (SiO4)4- tetrahedra. Soddyite is characterized by Raman bands at 828.0, 808.6 and 801.8 cm(-1), 909.6 and 898.0 cm(-1), and 268.2, 257.8 and 246.9 cm(-1), attributed to the nu1, nu3, and nu2 (delta) (UO2)2+, respectively. Coincidences of the nu1 (UO2)2+ and the nu1 (SiO4)4- is expected. Bands at 1082.2, 1071.2, 1036.3, 995.1 and 966.3 cm(-1) are attributed to the nu3 (SiO4)4-. Sets of Raman bands in the 200-300 cm(-1) region are assigned to nu2 (delta) (UO2)2+ and UO ligand vibrations. Multiple bands indicate the non-equivalence of the UO bonds and the lifting of the degeneracy of nu2 (delta) (UO2)2+ vibrations. The (SiO4)4- tetrahedral are characterized by bands in the 470-550 cm(-1) and in the 390-420 cm(-1) region. These bands are attributed to the nu4 and nu2 (SiO4)4- bending modes. The minerals show characteristic OH stretching bands in the 2900-3500 and 3600-3700 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号