首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 139 毫秒
1.
We report the synthesis, characterization, and optical and electrochemical properties of two structurally similar coumarin dyes ( C1 and C2 ). These dyes have been deployed as sensitizers in TiO2 nanoparticles and thin films, and the effect of molecular structure on interfacial electron‐transfer dynamics has been studied. Steady‐state optical absorption, emission, and time‐resolved emission studies on both C1 and C2 , varying the polarity of the solvent and the solution pH, suggest that both photoexcited dyes exist in a locally excited (LE) state in solvents of low polarity. In highly polar solvents, however, C1 exists in an intramolecular charge‐transfer (ICT) state, whereas C2 exists in both ICT and twisted intramolecular charge‐transfer (TICT) states, their populations depending on the degree of polarity of the solvent and the pH of the solution. We have employed femtosecond transient absorption spectroscopy to monitor the charge‐transfer dynamics in C1 ‐ and C2 ‐sensitized TiO2 nanoparticles and thin films. Electron injection has been confirmed by direct detection of electrons in the conduction band of TiO2 nanoparticles and of radical cations of the dyes in the visible and near‐IR regions of the transient absorption spectra. Electron injection in both the C1 /TiO2 and C2 /TiO2 systems has been found to be pulse‐width limited (<100 fs); however, back‐electron‐transfer (BET) dynamics has been found to be slower in the C2 /TiO2 system than in the C1 /TiO2 system. The involvement of TICT states in C2 is solely responsible for the higher electron injection yield as well as the slower BET process compared to those in the C1 /TiO2 system. Further pH‐dependent experiments on C1 ‐ and C2 ‐sensitized TiO2 thin films have corroborated the participation of the TICT state in the slower BET process in the C2 /TiO2 system.  相似文献   

2.
Time‐resolved transient absorption and fluorescence spectroscopy with nano‐ and femtosecond time resolution were used to investigate the deactivation pathways of the excited states of distyrylfuran, thiophene and pyridine derivatives in several organic solvents of different polarity in detail. The rate constant of the main decay processes (fluorescence, singlet–triplet intersystem crossing, isomerisation and internal conversion) are strongly affected by the nature [locally excited (LE) or charge transfer (CT)] and selective position of the lowest excited singlet states. In particular, the heteroaromatic central ring significantly enhances the intramolecular charge‐transfer process, which is operative even in a non‐polar solvent. Both the thiophene and pyridine moieties enhance the S1→T1 rate with respect to the furan one. This is due to the heavy‐atom effect (thiophene compounds) and to the 1(π,π)*→3(n,π)* transition (pyridine compounds), which enhance the spin‐orbit coupling. Moreover, the solvent polarity also plays a significant role in the photophysical properties of these push–pull compounds: in fact, a particularly fast 1LE*→1CT* process was found for dimethylamino derivatives in the most polar solvents (time constant, τ≤400 fs), while it takes place in tens of picoseconds in non‐polar solvents. It was also shown that the CT character of the lowest excited singlet state decreased by replacing the dimethylamino side group with a methoxy one. The latter causes a decrease in the emissive decay and an enhancement of triplet‐state formation. The photoisomerisation mechanism (singlet/triplet) is also discussed.  相似文献   

3.
Detailed investigations by time‐resolved transient absorption and fluorescence spectroscopies with nano‐ and femtosecond time resolutions are carried out with the aim of characterising the lowest excited singlet and triplet states of three ethynyl fluorenes ( 1 – 3 ) and three ethynyl anthracenes ( 4 – 6 ) in solvents of different polarity. The solvent is found to modify the deactivation pathways of the lowest excited singlet state of compounds 1 – 4 , thus changing their fluorescence, intersystem crossing and internal conversion efficiencies. The fluorescence and triplet yields gradually decrease, while the internal conversion quantum yield increases upon increasing the solvent dielectric constant. These experimental results, coupled with the marked fluorosolvatochromic effect, point to the involvement of an emitting state with a charge‐transfer (CT) character, strongly stabilised by polar solvents. This is proved by ultrafast spectroscopic studies in which two transients, distinguished by characteristic spectral shapes assigned to locally excited (LE) and CT states, are detected, the CT state being the longer lived and fluorescent one in highly polar solvents. The intramolecular LE→CT process, operative in highly polar media, becomes particularly fast (up to ≈300 fs) in the case of the NO2 derivative 1 . No push–pull character is found for 5 and 6 , which exhibit different photophysical behaviour; indeed, the solvent polarity does not modify significantly the dynamics of the lowest excited singlet states. Quantum mechanical calculations at the TDDFT level are also used to determine the state order and nature of the lowest excited singlet and triplet states and to rationalise the different photophysical behaviour of fluorine and anthracene derivatives, particularly concerning the intersystem crossing process.  相似文献   

4.
The in situ open‐circuit voltages (Voc) and the in situ photoconductivities have been measured to study electron behavior in photocatalysis and its effect on the photocatalytic oxidation of methanol. It was observed that electron injection to the conduction band (CB) of TiO2 under light illumination during photocatalysis includes two sources: from the valence band (VB) of TiO2 and from the methanol molecule. The electron injection from methanol to TiO2 is slower than that directly from the VB, which indicates that the adsorption mode of methanol on the TiO2 surface can change between dark and illuminated states. The electron injection from methanol to the CB of TiO2 leads to the upshift of the Fermi level of electrons in TiO2, which is the thermodynamic driving force of photocatalytic oxidation. It was also found that the charge state of nano‐TiO2 is continuously changing during photocatalysis as electrons are injected from methanol to TiO2. Combined with the apparent Langmuir–Hinshelwood kinetic model, the relation between photocatalytic kinetics and electrons in the TiO2 CB was developed and verified experimentally. The photocatalytic rate constant is the variation of the Fermi level with time, based on which a new method was developed to calculate the photocatalytic kinetic rate constant by monitoring the change of Voc with time during photocatalysis.  相似文献   

5.
A combined femtosecond transient absorption (fs‐TA) and nanosecond time‐resolved resonance Raman (ns‐TR3) spectroscopic investigation of the photoreaction of 2‐benzoylpyridine (2‐BPy) in acetonitrile and neutral, basic and acidic aqueous solvents is reported. fs‐TA results showed that the nπ* triplet 2‐BPy is the precursor of the photocyclisation reaction in neutral and basic aqueous solvents. The cis triplet biradical and the cis singlet zwitterionic species produced during the photocyclisation reaction were initially characterised by ns‐TR3 spectroscopy. In addition, a new species was uniquely observed in basic aqueous solvent after the decay of the cis singlet zwitterionic species and this new species was tentatively assigned to the photocyclised radical anion. The ground‐state conformation of 2‐BPy in acidic aqueous solvent is the pyridine nitrogen‐protonated 2‐BPy cation (2‐BPy‐NH+) rather than the neutral form of 2‐BPy. After laser photolysis, the singlet excited state (S1) of 2‐BPy‐NH+ is generated and evolves through excited‐state proton transfer (ESPT) and efficient intersystem crossing (ISC) processes to the triplet exited state (T1) of the carbonyl oxygen‐protonated 2‐BPy cation (2‐BPy‐OH+) and then photocyclises with the lone pair of the nitrogen atom in the heterocyclic ring. Cyclisation reactions take place both in neutral/basic and acidic aqueous solvents, but the photocyclisation mechanisms in these different aqueous solvents are very different. This is likely due to the different conformation of the precursor and the influence of hydrogen‐bonding of the solvent on the reactions.  相似文献   

6.
A novel pentacene dimer ( P2 ) and a structurally analogous monomer ( P1 ) were synthesized for use in n‐type dye‐sensitized solar cells. In P2 , the triplet excited states formed by the rapid, spin‐allowed process singlet fission were expected to enable carrier multiplication in comparison to the slow, spin‐forbidden intersystem crossing seen in P1 . A meta‐positioning of the two pentacenes and the carboxylate anchor were chosen in P2 to balance the intramolecular dynamics of singlet fission and electron injection. Electron injection from energetically low‐lying triplet excited states of pentacene units necessitated the intrinsic and extrinsic lowering of the Fermi level of the semiconductor. Indium‐zinc oxide in the presence of Li+ was found to be the optimum choice for the photoelectrodes. Efficient electron injection from the triplet excited states of P1 and P2 was found, with a carrier multiplication of nearly 130 %.  相似文献   

7.
The main photophysical properties of a series of recently synthetized 1,2‐ and 1,3‐squaraines, including absorption electronic spectra, singlet‐triplet energy gaps, and spin‐orbit matrix elements, have been investigated by means of density functional theory (DFT) and time‐dependent DFT approaches. A benchmark of three exchange‐correlation functionals has been performed in six different solvent environments. The investigated 1,2 squaraines have been found to possess two excited triplet states (T1 and T2) that lie below the energy of the excited singlet one (S1). The radiationless intersystem spin crossing efficiency is thus enhanced in both the studied systems and both the transitions could contribute to the excited singlet oxygen production. Moreover, they have a singlet‐triplet energy gap higher than that required to generate the cytotoxic singlet oxygen species. According to our data, these compounds could be used in photodynamic therapy applications that do not require high tissue penetration. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
Two self‐assembled supramolecular donor–acceptor triads consisting of AlIII porphyrin (AlPor) with axially bound naphthalenediimide (NDI) as an acceptor and tetrathiafulvalene (TTF) as a secondary donor are reported. In the triads, the NDI and TTF units are attached to AlIII on opposite faces of the porphyrin, through covalent and coordination bonds, respectively. Fluorescence studies show that the lowest excited singlet state of the porphyrin is quenched through electron transfer to NDI and hole transfer to TTF. In dichloromethane hole transfer to TTF dominates, whereas in benzonitrile (BN) electron transfer to NDI is the main quenching pathway. In the nematic phase of the liquid crystalline solvent 4‐(n‐pentyl)‐4′‐cyanobiphenyl (5CB), a spin‐polarized transient EPR spectrum that is readily assigned to the weakly coupled radical pair TTF.+NDI.? is obtained. The initial polarization pattern indicates that the charge separation occurs through the singlet channel and that singlet–triplet mixing occurs in the primary radical pair. At later time the polarization pattern inverts as a result of depopulation of the states with singlet character by recombination to the ground state. The singlet lifetime of TTF.+NDI.? is estimated to be 200–300 ns, whereas the triplet lifetime in the approximately 350 mT magnetic field of the X‐band EPR spectrometer is about 10 μs. In contrast, in dichloromethane and BN the lifetime of the charge separation is <10 ns.  相似文献   

9.
《Chemphyschem》2003,4(12):1308-1315
The low‐energy regions of the singlet→singlet, singlet→triplet, and triplet→triplet electronic spectra of 2,2′‐bithiophene are studied using multiconfigurational second‐order perturbation theory (CASPT2) and extended atomic natural orbitals (ANO) basis sets. The computed vertical, adiabatic, and emission transition energies are in agreement with the available experimental data. The two lowest singlet excited states, 11Bu and 21Bu, are computed to be degenerate, a novel feature of the system to be borne in mind during the rationalization of its photophysics. As regards the observed high triplet quantum yield of the molecule, it is concluded that the triplet states 23Ag and 23Bu, separated about 0.4 eV from the two lowest singlet excited states, can be populated by intersystem crossing from nonplanar singlet states.  相似文献   

10.
Photoinduced electron transfer into mesoporous oxide substrates is well-known to occur efficiently for both singlet and triplet excited states in conventional metal-to-ligand charge transfer (MLCT) dyes. However, in all-organic dyes that have the potential for producing two triplet states from one absorbed photon, called singlet fission dyes, the dynamics of electron injection from singlet vs. triplet excited states has not been elucidated. Using applied bias transient absorption spectroscopy with an anthradithiophene-based chromophore (ADT-COOH) adsorbed to mesoporous indium tin oxide (nanoITO), we modulate the driving force and observe changes in electron injection dynamics. ADT-COOH is known to undergo fast triplet pair formation in solid-state films. We find that the electronic coupling at the interface is roughly one order of magnitude weaker for triplet vs. singlet electron injection, which is potentially related to the highly localized nature of triplets without significant charge-transfer character. Through the use of applied bias on nanoITO:ADT-COOH films, we map the electron injection rate constant dependence on driving force, finding negligible injection from triplets at zero bias due to competing recombination channels. However, at driving forces greater than −0.6 eV, electron injection from the triplet accelerates and clearly produces a trend with increased applied bias that matches predictions from Marcus theory with a metallic acceptor.

The rate of photoinduced electron transfer from triplet excited states after singlet fission in molecules adsorbed to mesoporous oxide substrates is shown through transient absorption studies to depend systematically on applied bias.  相似文献   

11.
The electron positive boron atom usually does not contribute to the frontier orbitals for several lower‐lying electronic transitions, and thus is ideal to serve as a hub for the spiro linker of light‐emitting molecules, such that the electron donor (HOMO) and acceptor (LUMO) moieties can be spatially separated with orthogonal orientation. On this basis, we prepared a series of novel boron complexes bearing electron deficient pyridyl pyrrolide and electron donating phenylcarbazolyl fragments or triphenylamine. The new boron complexes show strong solvent‐polarity dependent charge‐transfer emission accompanied by a small, non‐negligible normal emission. The slim orbital overlap between HOMO and LUMO and hence the lack of electron correlation lead to a significant reduction of the energy gap between the lowest lying singlet and triplet excited states (ΔET‐S) and thereby the generation of thermally activated delay fluorescence (TADF).  相似文献   

12.
Energy differences, ΔXS‐t (X = E, H and G) (ΔXS‐t = X(singlet)‐X(triplet)) between singlet (s) and triplet (t) states are calculated at B3LYP/6‐311++G (3df,2p). The DFT calculations show that the triplet state of C4H4C is a ground state with planar conformer respect to its corresponding nonplanar singlet state. Both singlet and triplet states of C4H4M (M = Si, Ge, Sn and Pb) have a planar conformer with the singlet ground state. Four isodesmic reactions are presented for determining the stability energies, SE. NICS calculations are carried out for C4H4M to determine the aromatic character.  相似文献   

13.
Steady state absorption and fluorescence as well as the time resolved absorption studies in the pico and subpicosecond time domain have been performed to characterize the excited singlet and triplet states of Michler's ketone (MK). The nature of the lowest excited singlet (S1) and triplet (T1) states depends on the polarity of the solvent - in nonpolar solvents they have either pure nπ * character or mixed character of nπ * and ππ * states but in more polar solvents the states have CT character. Concentration dependence of the shapes of the fluorescence as well the excited singlet and triplet absorption spectra provide the evidence for the association of the MK molecules in the ground state.  相似文献   

14.
The excited-state dynamics of a transition metal complex, tris(2,2'-bipyridine)ruthenium(II), [Ru(bpy)(3)](2+), has been investigated using femtosecond fluorescence upconversion spectroscopy. The relaxation dynamics in these molecules is of great importance in understanding the various ultrafast processes related to interfacial electron transfer, especially in semiconductor nanoparticles. Despite several experimental and theoretical efforts, direct observation of a Franck-Condon singlet excited state in this molecule was missing. In this study, emission from the Franck-Condon excited singlet state of [Ru(bpy)(3)](2+) has been observed for the first time, and its lifetime has been estimated to be 40 +/- 15 fs. Biexponential decays with a fast rise component observed at longer wavelengths indicated the existence of more than one emitting state in the system. From a detailed data analysis, it has been proposed that, on excitation at 410 nm, crossover from higher excited (1)(MLCT) states to the vibrationally hot triplet manifold occurs with an intersystem crossing time constant of 40 +/- 15 fs. Mixing of the higher levels in the triplet state with the singlet state due to strong spin-orbit coupling is proposed. This enhances the radiative rate constant, k(r), of the vibrationally hot states within the triplet manifold, facilitating the upconversion of the emitted photons. The vibrationally excited triplet, which is emissive, undergoes vibrational cooling with a decay time in the range of 0.56-1.3 ps and relaxes to the long-lived triplet state. The results on the relaxation dynamics of the higher excited states in [Ru(bpy)(3)](2+) are valuable in explaining the role of nonequilibrated higher excited sensitizer states of transition metal complexes in the electron injection and other ultrafast processes.  相似文献   

15.
Discovery of species with adaptive aromaticity (being aromatic in both the lowest singlet and triplet states) is particularly challenging as cyclic species are generally aromatic either in the ground state or in the excited state only, according to Hückel's and Baird's rules. Inspired by the recent realization of cyclo[18]carbon, here we demonstrate that cyclo[10]carbon possesses adaptive aromaticity by screening cyclo[n]carbon (n=8?24), which is supported by nucleus‐independent chemical shift (NICS), anisotropy of the current‐induced density (ACID), π contribution of electron localization function (ELFπ) and electron density of delocalized bonds (EDDB) analyses. Further study reveals that the lowest triplet state of cyclo[10]carbon is formed by in‐plane ππ* excitation. Thus, the major contribution to the aromaticity from out‐of‐plane π molecular orbitals does not change significantly in the lowest singlet state. Our findings highlight a crucial role of out‐of‐plane π orbitals in maintaining aromaticity for both the lowest singlet and triplet states as well as the aromaticity dependence on the number of the carbon in cyclo[n]carbon.  相似文献   

16.
The potential energy surface (PES) of CH3SO radical with NO reaction has been studied at MP2/6-311G(2df, p) and QCISD/6-311G(2df, p) levels. Geometries of the reactants, transition states (TS) and products were optimized at B3LYP/6-311G (d,p) level. The geometries of the transition states were found for the first time. The calculated results show that the reaction can proceed via singlet-state or triplet-state PES. Because of the high energy barrier of triplet surface, the singlet surface reactions are dominant. The topological analysis of electron density shows that there are two kinds of structaral transition states (the bifurcation-type ring structure transition state and the T-shaped conflict structure transition state) in the titled reaction. The total electronic density of the reactants, TS and products and the spin electronic density on the triplet surface were also discussed in this paper.  相似文献   

17.
The photophysics of bis(4,4′‐di‐tert‐butyl‐2,2′‐bipyridine‐κ2N,N′)[2‐(4‐carboxyphenyl)‐4,5‐bis(p‐tolylimino‐κN)imidazolato]ruthenium(II) hexafluorophosphate is investigated, both in solution and attached to a nanocrystalline TiO2 film. The studied substitution pattern of the 4H‐imidazole ligand is observed to block a photoinduced structural reorganization pathway within the 4H‐imidazole ligand that has been previously investigated. Protonation at the 4H‐imidazole ring decreases the excited‐state lifetime in solution. When the unprotonated dye is anchored to TiO2, photoinduced electron injection occurs from thermally nonrelaxed triplet metal‐to‐ligand charge transfer (3MLCT) states with a characteristic time constant of 0.5 ps and an injection efficiency of roughly 25 %. Electron injection from the subsequently populated thermalized 3MLCT state of the dye does not take place. The energy of this state seems to be lower than the conduction band edge of TiO2.  相似文献   

18.
Polymeric carbon nitride materials have been used in numerous light‐to‐energy conversion applications ranging from photocatalysis to optoelectronics. For a new application and modelling, we first refined the crystal structure of potassium poly(heptazine imide) (K‐PHI)—a benchmark carbon nitride material in photocatalysis—by means of X‐ray powder diffraction and transmission electron microscopy. Using the crystal structure of K‐PHI, periodic DFT calculations were performed to calculate the density‐of‐states (DOS) and localize intra band states (IBS). IBS were found to be responsible for the enhanced K‐PHI absorption in the near IR region, to serve as electron traps, and to be useful in energy transfer reactions. Once excited with visible light, carbon nitrides, in addition to the direct recombination, can also undergo singlet–triplet intersystem crossing. We utilized the K‐PHI centered triplet excited states to trigger a cascade of energy transfer reactions and, in turn, to sensitize, for example, singlet oxygen (1O2) as a starting point to synthesis up to 25 different N‐rich heterocycles.  相似文献   

19.
The photochemistry of a p-biphenylyl diazo ester (BpCN2CO2CH3) and diazo ketone (BpCN2COCH3) were studied by ultrafast time-resolved UV-vis and IR spectroscopies. The excited states of these diazo compounds were detected and found to decay with lifetimes of less than 300 fs. The diazo ester produces singlet carbene with greater quantum efficiency than the ketone analogue due to competing Wolff rearrangement (WR) in the excited state of the diazo ketone. Carbene BpCCO2CH3 has a singlet-triplet gap that is close to zero in cyclohexane, but the triplet is the ground state. The two spin states are in rapid equilibrium in this solvent relative to reaction with cyclohexane. There is (for a carbene) a slow rate of singlet to triplet intersystem crossing (isc) in this solvent because the orthogonal singlet must rotate to a higher energy orientation prior to isc. In acetonitrile and in dichloromethane BpCCO2CH3 has a singlet ground state. Ketocarbene BpCCOCH3 has a singlet ground state in cyclohexane, in dichloromethane, and in acetonitrile and decays by WR to form a ketene detected by ultrafast IR spectroscopy in these solvents. Ketocarbenes have more stable singlet states, relative to carbene esters, because of the superior conjugation of the filled hybrid orbital of the carbene with the pi system of the carbonyl group, the same factor that makes methyl ketones more acidic than the analogous esters. The rate of WR of BpCCOCH3 is faster in cyclohexane than in dichloromethane and acetonitrile because of intimate solute-solvent interactions between the empty p orbital of the carbene and nonbonding electron pairs of heteroatoms of the solvent. These interactions stabilize the carbene and retard the rate of WR.  相似文献   

20.
Ab initio molecular orbital theory is used to study carbon-beryllium binding in the lowest singlet and triplet states of CH2Be. When electron correlation is included, both singlet and triplet states are significantly bound relative to the ground states of CH2 and Be fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号