首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
The densities of mixtures of aqueous solutions of hydrochloric acid with solutions of cadmium chloride, copper chloride, manganese chloride, and zinc chloride have been measured at constant ionic strengths of 1.0 and 3.0 mol-kg–1 at 25°C. The density data were used to determine the volumes of mixing (V m ). The volume of mixing equations of Pitzer were then fit to the resulting V m data to obtain the Pitzer parameters V MN and V MNX , which are the pressure derivatives of the free energy equation parameters.  相似文献   

2.
Raman spectra of aqueous Zn(II)–perchlorate solutions were measured over broad concentration (0.50–3.54 mol-L–1) and temperature (25–120°C) ranges. The weak polarized band at 390 cm–1 and two depolarized modes at 270 and 214 cm–1 have been assigned to 1(a 1g), 2(e g), and 5(f 2g) of the zinc–hexaaqua ion. The infrared-active mode at 365 cm–1 has been assigned to 3(f 1u). The vibrational analysis of the species [Zn(OH2) 2 + ] was done on the basis of O h symmetry (OH2 as point mass). The polarized mode 1(a 1g)-ZnO6 has been followed over the full temperature range and band parameters (band maximum, full width at half height, and intensity) have been examined. The position of the 1(a 1g)-ZnO6 mode shifts only about 4 cm–1 to lower frequencies and broadens by about 32 cm–1 for a 95°C temperature increase. The Raman spectroscopic data suggest that the hexaaqua–Zn(II) ion is thermodynamically stable in perchlorate solution over the temperature and concentration range measured. These findings are in contrast to ZnSO4 solutions, recently measured by one of us, where sulfate replaces a water molecule of the first hydration sphere. Ab initio geometry optimizations and frequency calculations of [Zn(OH2) 2 + ] were carried out at the Hartree–Fock and second-order Møller–Plesset levels of theory, using various basis sets up to 6-31 + G*. The global minimum structure of the hexaaqua–Zn(II) species corresponds with symmetry T h. The unscaled vibrational frequencies of the [Zn(OH2) 2 + ] are reported. The unscaled vibrational frequencies of the ZnO6, unit are lower than the experimental frequencies (ca. 15%), but scaling the frequencies reproduces the measured frequencies. The theoretical binding enthalpy for [Zn(OH2) 2 + ] was calculated and accounts for ca. 66% of the experimental single-ion hydration enthalpy for Zn(II).Ab initio geometry optimizations and frequency calculations are also reported for a [Zn(OH2) 2 18 ] (Zn[6 + 12]) cluster with 6 water molecules in the first sphere and 12 in the second sphere. The global minimum corresponds with T symmetry. Calculated frequencies of the zinc [6 + 12] cluster correspond well with the observed frequencies in solution. The 1-ZnO6 (unscaled) mode occurs at 388 cm–1 almost in perfect correspondence to the experimental value. The theoretical binding enthalpy for [Zn(OH2) 2 18 ] was calculated and is very close to the experimental single ion-hydration enthalpy for Zn(II). The water molecules of the first sphere form strong hydrogen bonds with water molecules in the second hydration shell because of the strong polarizing effect of the Zn(II) ion. The importance of the second hydration sphere is discussed.  相似文献   

3.
The enthalpy of mixing of aqueous solutions of cadmium chloride, copper chloride, manganese chloride, and zinc chloride with solutions of hydrochloric acid were measured calorimetrically at constant ionic strengths of 1.0 and 3.0 mol-kg–1 at 25°C. The excess enthalpy equation of Pitzer has been fit to the resulting data to obtain the Pitzer mixing parameters MN L and MN L , which are the temperature derivatives of the free energy equation parameters.  相似文献   

4.
Densities and electrolytic conductances of hydrochloric acid and ternary aqueous solutions of HCl with manganese(II), copper(II), and cadmium(II) chlorides, respectively, have been measured from about 0.2 m to ternary saturation points at several constant molalities of the salt, MnCl2, or that of HCl for the system MnCl2–HCl–H2O as well as at constant total molal ionic strength of I=10.0 for all the three ternary systems (Mn, Cu, Cd)Cl2–HCl–H2O at 25°C. The molality dependence of the calculated volume of mixing changes V m and of the specific conductances are discussed on the basis of the different degrees of complex formation of the bivalent transition metal chlorides in the presence of excess amounts of chloride anions in the form of HCl. It was to be seen from the present results that even the manganese(II) chloride, which behaves as a fairly strong electrolyte in dilute aqueous solutions, is considerably complexed at high concentrations of HCl, with the degree of complexation of the cations increasing in the sequence Mn2–2–2–.Part of this publication was presented at the XIX International Conference on Solution Chemistry (XIX ICSC), Lund, Sweden, August 15–18, 1988.  相似文献   

5.
A nanoceramic product of the composition Lu2Ti2O7 is synthesized by a coprecipitation method with a subsequent sublimation drying and an annealing at 650–1650°C. The conduction of Lu2Ti2O7 synthesized at 1650°C is ionic (10–3 S cm–1 at 800°C). Thus, a new material with a high ionic conduction has been discovered. The ordering in Lu2Ti2O7 is studied by methods of RFA, RSA, IK spectroscopy, electron microscopy, and impedance spectroscopy. The existence of a low-temperature phase transition fluorite-pyrochlore at 800°C and a high-temperature conversion order-disorder at 1650°C are established.Translated from Elektrokhimiya, Vol. 41, No. 3, 2005, pp. 298–303.Original Russian Text Copyright © 2005 by Shlyakhtina, Ukshe, Shcherbakova.  相似文献   

6.
The rates of oxidation of Fe(II) in NaCl and NaClO 4 solutions were studied as a function of pH (6 to 9), temperature (5 to 25°C), and ionic strength (0 to 6m). The rates are second order with respect to [H+] or [OH] and independent of ionic strength and temperature. The overall rate of the oxidation is given by
  相似文献   

7.
Osmotic coefficients of water have been measured isopiestically for the entire region of homogeneous ternary solutions for the Rb2SO4- (NH4)2SO4-H2O system at 25°C. One might expect that water isoactivity lines should be straight since this system involves a continuous series of solid solutions. The related systems (K2SO4-Rb2SO4-H2O and (K2SO4- (NH4)2 SO4-H2O) obey the linearity of water isoactivity lines rule. Contrary to expectations, the (Rb2SO4-(NH4)2-SO4-H2O appears to be the first water–salt system containing continuous solid solutions in which the mentioned rule is not obeyed.  相似文献   

8.
Thermal dehydration and decomposition characteristics of Fe(III) chloride hydrate have been studied by both isothermal and non-isothermal methods. After the initial melting at 35–40°C both dehydration and decomposition of the salt proceed simultaneously at temperature above 100°C. At 250–300°C a stable hydrated Fe(OH)2Cl is formed representing the first plateau region in the TG curve. Around 400°C, a second plateau is observed corresponding to the formation of mostly Fe2O3 which however retains some OH groups and Cl ions. However, these temperature ranges vary with the TA equipments used. Chemical analysis of the products of decomposition at temperatures above 140°C also gives evidence for the formation of FeOCl which on hydrolysis in water gives FeCl3 in solution. The FT-IR spectra suggest the presence of structural OH groups even for samples calcined at 300–400°C. The XRD patterns of the products of decomposition in the temperature range 160–400°C indicate the presence of -FeOOH, some unidentified basic chlorides and -Fe2O3.The authors wish to thank the Director, R. R. L. Bhubaneswar for his kind permission to publish this paper. One of the authors (SKM) is grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi for the award of a fellowship.  相似文献   

9.
Heats of dilution of concentrated aqueous solutions (4.43 moles-kg–1) of FeCl2 were measured at 15, 25, and 35°C. The heat capacities of these concentrated solutions were also measured at the same temperatures. From these data the partial molal heat capacity, C p2 0 (FeCl2, aq, 298.15°K)=–2.56±30 J–°K–1–mole–1, was calculated. The partial molal heat capacity of Fe2+(aq), –2±30 J-°K–1-mole–1, was correlated with the correspondence principle equations of Criss and Cobble.  相似文献   

10.
We have used a combination of ultrasound and density techniques to measure the hydration parameters, apparent molar volume, and apparent molar adiabatic compressibility, of the antitumor drug cis-dichlorodiammineplatinum(II), cis-[Pt(NH3)2Cl2], and its inactive isomer trans-dichlorodiammineplatinum(II), trans-[Pt(NH3)2Cl2], in 10 mM NaNO3, pH 5.6 at 37°C. The data have been interpreted in terms of the overall hydration of each isomer, the actual hydration contribution to the adiabatic compressibility, K h, ranges from –56.4 × 10–4 to –20.3 × 10–4 cm3-mol–1-bar–1, and the volume contribution, V h, ranges from –16.3 to –6.4 cm3-mol–1. The negative signs of these hydration contributions indicate that the volume and compressibility of the water immobilized by the platinum complexes is smaller than the volume and compressibility of bulk water. The V h and K h parameters for all platinum complexes investigated are linearly dependent on the relative amount of hydrolyzed chlorides. The values of each parameter become more negative with increasing hydrolysis, and show that the degree of hydration increases. The similar dependence of the amount of hydrolyzed chloride ligands reveals similar hydration properties for these two complexes. Thus, the symmetry of the complexes, which is of crucial importance for anticancer activity, has no influence on their hydration properties. Under our experimental conditions, the equilibrium constants for the hydrolysis of cis-[Pt(NH3)2Cl2] are K 1 = 2.52 mM and K 2 = 0.04 mM. The equilibrium constant for the first step of hydrolysis of trans-[Pt(NH3)2Cl2] is 0.03 mM, while the second chloride ligand cannot be substituted by water, even in the irreversible reaction with AgNO3. Furthermore, continuous measurements of the ultrasonic velocity during hydrolysis permits the accurate evaluation of the pseudo-first-order rate constant k 1 for the hydrolysis of the first chloride ligand of cis-[Pt(NH3)2Cl2], which is 16±1×10–5 s–1.  相似文献   

11.
The apparent molar heat capacities, Cp,, of alkaline aqueous solutions of aluminum ion in excess NaOH have been measured at temperatures between 50 and 250°C in the overall molality range 0.3–1.7 mol-kg–1. Enthalpies of dilution, L, have also been determined at 99°C and apparent molar relative enthalpies, L, were calculated starting from 2.16 mol-kg–1 as the maximum concentration. Measurements of the above quantities have been performed by means of a differential flow calorimeter built in our laboratory and already described. The thermodynamic data obtained and the corresponding quantities for aqueous NaOH previously determined have been fitted to the equations of the Pitzer ionic interaction model to obtain parameters relative to aqueous NaAl(OH)4. These parameters permit the calculation of Cp,, and L for this species over the examined range of temperatures and concentrations.  相似文献   

12.
The oxidation of Fe(II) with H2O2 has been measured in NaCl and NaClO4 solutions as a function of pH, temperature T (K) and ionic strength (M, mol-L–1). The rate constants, k (M–1-sec–1), d[Fe(II)]/DT=-k[Fe(II)][2O2]at pH=6.5 have been fitted to equations of the formlog k = log k0+ AI 1/2+BI+CI 1/2/T Where log k0=15.53-3425/T in water; A=–2.3, –1.35; B=0.334, 0.180; and C=391, 235, respectively, for NaCl (=0.09) and NaClO4 ( =0.08). Measurements made in NaCl solutions with added anions yield rates in the order B(OH) 4 >HCO 3 >ClO 4 >Cl>NO 3 >SO 4 2– and are attributed to the relative strength of the interactions of Fe2+ or FeOH+ with these anions. The FeB(OH) 4 + species is more reactive while the FeCO 3 0 , FeCl+, FeNO 3 + and FeSO 4 0 species are less reactive than the FeOH+ ion pair. The general trend is similar to our earlier studies of the oxidation of Fe(II) with O2 except for B(OH) 4 . The effect of pH on the logk was found to be a quadratic function of the concentration of H+ or OH from pH=4 to 8. These results have been attributed to the different rate constants for Fe2+ (k0) and FeOH+ (k1) which are related to the measured k by, k=k0Fe + k1FeOH, where i is the molar fraction of species i. The rates increase due to the greater reactivity of FeOH+ compared to Fe2+. k0 is independent of composition and ionic strength but k1 is a function of ionic strength and composition due to the interactions of FeOH+ with various anions.  相似文献   

13.
The specific heat capacities of the aqueous multicomponent system NaCl +KCl+MgCl2+CaCl2 with ionic strength between 8.3 and 9.6 (resembling Dead Sea waters) were measured between 15°C and 45°C. The obtained data were fitted to an empirical equation as a function of concentration and temperature. The thermodynamic functions of the studied multicomponent system were found to be strongly influenced by changes in MgCl2 concentrations. The application of Young's rule to such concentrated systems was checked at 25°C. The calculated (by Young's rule) specific heat capacitiesC p and apparent molar heat capacities Cp, of these multicomponent electrolyte solutions were in reasonable agreement with the measured values (–0.008 J-g–1-K–1 and –2.6 J-mol–1-K–1, respectively).  相似文献   

14.
The ionic strength and temperature dependencies of the molal acid association quotients of 2,2-Bis(hydroxymethyl)-2,2,2-nitrilotriethanol (also abbreviated as bis-tris) were determined potentiometrically in a concentration cell fitted with hydrogen electrodes. The emf was recorded for equimolal bis-tris/bis- trisHCl buffer solutions from 5 to 125°C at approximately 25°C intervals, and at nine ionic strengths from 0.05 to 5.0m (NaCl). The molal association quotients, combined with infinite dilution values from the literature, are described precisely by a seven parameter equation which yielded the following thermodynamic quantities at infinite dilution and 25°C: logK=6.481±0.003, H o =–28.5±0.2 kJ-mol –1 , S o =28.5±0.8 J-K –1 -mol –1 , and C P o =–22±5 J-K –1 -mol –1 . The equation incorporates a simple three term expression for logK, but requires four terms to describe the rather complex ionic strength dependence despite the reaction being isocoulombic. The molal association quotients from this study and the literature were also subjected to the Pitzer ion interaction treatment.  相似文献   

15.
A neutral metal complex, [Pt(dddt)2]° (1), has been obtained by oxidation of the [Pt(dddt)2] anion with excess (Bu4N)AuBr4 in nitrobenzene. Crystallographic data for 1a=17.854(9) Å,b=18.409(9) Å,c=4.717(5) Å, =68.83(2)°, space group P21/n,Z=4,d calc=2.55 g/cm3. In1 two independent centrosymmetric [Pt(dddt)2]° molecules are packed in stacks that form layers parallel to the (110) plane. The molecules of1 in the layers have shortened S...S contacts 3.491(9) Å, and 3.594(10) Å. The average bond lengths Pt-S 2.242(7) Å, S-C 1.71(2) Å and C=C 1.40(3) Å, together with the square-planar coordination of Pt in PtS4, suggest considerable conjugation in the metal cycles.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1207–1209, July, 1993.  相似文献   

16.
The apparent molar volumes V of KCl, BaCl2, K2SO4, LaCl3, Co(en)3Cl3 [Tris(ethylenediamine)cobalt(III) chloride], K3Co(CN)6, K3Fe(CN)6, K4Fe(CN)6, and Ba3[Co(CN)6]2 have been determined at 25°C in both light and heavy water. The V values in D2O are systematically lower and increase more rapidly with salt concentration than the V in H2O. The volume of transfer from H2O to D2O as well as the partial molar volume at infinite dilution in both solvents have also been calculated. These results together with literature values for other electrolytes were used to estimate both of these quantities for D2O solutions of individual ions. The predictions of ion hydration models and ion-ion interactions are compared with experimental observations.  相似文献   

17.
The near infrared spectra of water in aqueous solutions of La(ClO4)3, Pr(ClO4)3, Nd(ClO4)3, Gd(ClO4)3, Er(ClO4)3, Yb(ClO4)3, Lu(ClO4)3, and NaClO4 have been measured in the concentration range from 0.3 to 2.5 mol-dm–3, at 25°C. The relative contents of free OH groups in the 1.0, 1.6, and 2.2M solutions have been calculated from extinction coefficients for water at 1160 nm. They increase with increasing salt concentration and are greater in solutions of the lighter lanthanide perchlorates at any fixed molarity. The results are discussed in terms of the stoichiometry and structure of hydrated cations of trivalent lanthanides.  相似文献   

18.
The first purely alkoxide-based sol-gel route to nano-phase powders and thin films of perovskite La0.75Sr0.25MnO3 is described. The phase and microstructure evolution on heat treatment of free gel films to form the target nano-phase oxide were investigated by TGA, IR spectroscopy, powder XRD, SEM and TEM-EDS. The xerogel consisted of a hydrated oxo-carbonate, without remaining alkoxo groups or solvent. Heating at 5°C·min–1 decomposed the carbonate groups and yielded the pure perovskite La0.75Sr0.25MnO3 at 760°C. The cell dimensions were virtually unchanged from the first observation of perovskite at 680°C, to 1000°C, 4 h. The monoclinic cell of La0.75Sr0.25MnO3 obtained at 1000°C, 4 h, had the dimensions a = 5.475(1), b = 5.504(2), c = 7.771(1) Å, = 90.50(2), fitting the literature data quite well. Crack-free, homogenous, 150 nm thick La0.75Sr0.25MnO3 films were prepared by spin-coating Si/SiO2/TiO2/Pt and polycrystalline -Al2O3 substrates with a 0.6 M alkoxide solution, followed by heating at 5°C·min–1 to 800°C, 30 min.  相似文献   

19.
Equations in the ion-interaction (Pitzer) system are derived for the volume change on mixing any combination of the sea salts NaCl, Na2SO4, MgSO4, MgCl2 at constant ionic strenth. For these mixings of different charge types, the equations include complex differences of pure electrolyte terms. Recently measured data for each of the pure electrolytes provide these pure electrolyte terms. Other recent measurements on the volume change on mixing are compared with values calculated from the equations. At 25°C there is no need to introduce the mixing terms based on differences in the interactions of ions of the same sign. At other temperatures, the agreement without the mixing terms is good, but significant improvement is obtained by inclusion of the binary mixing terms Cl,SO 4 v and Na,Mg v . The equations and parameters can then predict the volumetric properties of any mixed solution of these salts over the range 0–100°C and to at least 3 mol-kg–1 ionic strength.  相似文献   

20.
Heats of mixing of the solvents chloroform, methanol, and acetone with their solutions in polyvinylacetate have been measured at 25°C using a titration calorimeter. Titration of pure solvent to solutions as well as titration of solutions to the pure solvent or to diluted solutions have been performed. The second method, called reverse titration, proved to be more sensitive than normal dilution titration at sufficiently low polymer concentration. Equations describing the relative sensitivity of both titration methods have been developed. The concentration range covered by the experiments is restricted to volume fractions of polyvinylacetate not higher than 0.1–0.15 due to the high viscosities of concentrated solutions. The interaction parameterX H of the Flory-Huggins theory has been determined from the calorimetric data.X H is positive for methanol solutions and negative for chloroform and acetone solutions reflecting endothermic and exothermic heat effects respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号