首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Using small perturbations, within the framework of phenomenological theory of mixture combustion we study stability of the cylindrical front of deflagration combustion in an annular combustion chamber. The flame front is described as a discontinuity of gasdynamic parameters. It is discovered that the flame front is unstable for some types of small perturbations of the mainstream flow of the fuel mixture and the flame front. The mechanics of instability is examined using both numerical and analytical methods. The cases are presented of evolution of the instabilities rotating in the annular channel.  相似文献   

2.
We study the evolution of perturbations on the surface of a stationary plane flame front in a divergent flow of a combustible mixture incident on a plane wall perpendicular to the flow. The flow and its perturbations are assumed to be two-dimensional; i.e., the velocity has two Cartesian components. It is also assumed that the front velocity relative to the gas is small; therefore, the fluid can be considered incompressible on both sides of the front; in addition, it is assumed that in the presence of perturbations the front velocity relative to the gas ahead of it is a linear function of the front curvature. It is shown that due to the dependence (in the unperturbed flow) of the tangential component of the gas velocity on the combustion front on the coordinate along the front, the amplitude of the flame front perturbation does not increase infinitely with time, but the initial growth of perturbations stops and then begins to decline. We evaluate the coefficient of the maximum growth of perturbations, which may be large, depending on the problem parameters. It is taken into account that the characteristic spatial scale of the initial perturbations may be much greater than the wavelengths of the most rapidly growing perturbations, whose length is comparable with the flame front thickness. The maximum growth of perturbations is estimated as a function of the characteristic spatial scale of the initial perturbations.  相似文献   

3.
The beforehand unclear relation between the viscous-inviscid interaction and the instability of viscous gas flows is illustrated using three-dimensional boundary-layer perturbations in the case of sub- and supersonic outer flows. The assumptions are considered under which asymptotic boundary layer equations with self-induced pressure are derived and the excitation mechanisms of eigenmodes (i.e., Tollmien-Schlichting waves) are described. The resulting dispersion relations are analyzed. The boundary layer in a supersonic flow is found to be stable with respect to two-dimensional perturbations, whereas, in the three-dimensional case, the modes become unstable. The increment of growth is investigated as a function of the Mach number and the orientation of the front of a three-dimensional Tollmien-Schlichting wave.  相似文献   

4.
The stability of reaction-fronts in porous media is studied with analytical and numerical methods. A stability criterion has been derived using linear stability analysis assuming a sharp font. The sharp front assumption is an approximation of the mathematical model in the limit of an infinite rapid reaction. The criterion shows that the stability of a sharp reaction front is dependent on the permeability that develops behind it. The sharp front is unstable for perturbations of any wave-length if the permeability increases behind the front. The criterion shows that short wave-length perturbations are more unstable than long wave-length perturbations. The sharp front is labile when the permeabilities are the same at both sides of the front. This means that the perturbed front moves unchanged forward. Finally, perturbations will die out in case the permeability decreases behind the sharp front. The stability of non-sharp fronts are simulated numerically when dissolution is by first order kinetics, the transport is by convection and diffusion and when the permeability and specific reactive surface depends on the porosity. The numerical experiments behave according to the stability criterion.  相似文献   

5.
本文给出了圆管Poiseuille流动中Hagen-Poiseuille速度剖面的一种修正剖面.这种剖面可看作是轴对称扰动各谐波分量非线性相互作用对平均流影响的一般体现.通过对这种速度剖面的稳定性研究,本文首次得到轴对称扰动造成失稳的结果,提出了Hagen-Poiseuille流动一种新的产生失稳的可能途径.  相似文献   

6.
The bidomain model is the standard model describing electrical activity of the heart. Here we study the stability of planar front solutions of the bidomain equation with a bistable nonlinearity (the bidomain Allen‐Cahn equation) in two spatial dimensions. In the bidomain Allen‐Cahn equation a Fourier multiplier operator whose symbol is a positive homogeneous rational function of degree two (the bidomain operator) takes the place of the Laplacian in the classical Allen‐Cahn equation. Stability of the planar front may depend on the direction of propagation given the anisotropic nature of the bidomain operator. We establish various criteria for stability and instability of the planar front in each direction of propagation. Our analysis reveals that planar fronts can be unstable in the bidomain Allen‐Cahn equation in striking contrast to the classical or anisotropic Allen‐Cahn equations. We identify two types of instabilities, one with respect to long‐wavelength perturbations, the other with respect to medium‐wavelength perturbations. Interestingly, whether the front is stable or unstable under long‐wavelength perturbations does not depend on the bistable nonlinearity and is fully determined by the convexity properties of a suitably defined Frank diagram. On the other hand, stability under intermediate‐wavelength perturbations does depend on the choice of bistable nonlinearity. Intermediate‐wavelength instabilities can occur even when the Frank diagram is convex, so long as the bidomain operator does not reduce to the Laplacian. We shall also give a remarkable example in which the planar front is unstable in all directions.© 2016 Wiley Periodicals, Inc.  相似文献   

7.
A. Kurenkov  M. Oberlack 《PAMM》2005,5(1):469-470
A model for premixed turbulent combustion is investigated using a RANS-approach. The evolution of the flame front is described with the help of the level set approach [1] which is used for tracking of propagating interfaces in free-surface flows, geodesics, grid generation and combustion. The fluid properties are conditioned on the flame front position using a burntunburnt probability function across the flame front. Computations are performed using the code FASTEST-3D which is a flow solver for a non-orthogonal, block-structured grid. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Streamer ionization fronts are pulled fronts that propagate into a linearly unstable state; the spatial decay of the initial condition of a planar front selects dynamically one specific long-time attractor out of a continuous family. A stability analysis for perturbations in the transverse direction has to take these features into account. In this paper we show how to apply the Evans function in a weighted space for this stability analysis. Zeros of the Evans function indicate the intersection of the stable and unstable manifolds; they are used to determine the eigenvalues. Within this Evans function framework, we define a numerical dynamical systems method for the calculation of the dispersion relation as an eigenvalue problem. We also derive dispersion curves for different values of the electron diffusion constant and of the electric field ahead of the front. Numerical solutions of the initial value problem confirm the eigenvalue calculations. The numerical work is complemented with an analysis of the Evans function leading to analytical expressions for the dispersion relation in the limit of small and large wave numbers. The paper concludes with a fit formula for intermediate wave numbers. This empirical fit supports the conjecture that the smallest unstable wave length of the Laplacian instability is proportional to the diffusion length that characterizes the leading edge of the pulled ionization front. G. Derks acknowledges a travel grant of the Royal Society, which initiated this research, and a visitor grant of the Dutch funding agency NWO and the NWO-mathematics cluster NDNS+ to finish the work. The work was also supported by a CWI PhD grant for B. Meulenbroek.  相似文献   

9.
Equations are derived to describe the far-field laminar wake behind a body in incompressible fluid flow with an arbitrary distribution of the free-stream (unperturbed flow) velocity. For certain classes of free-stream flows, analysis of these equations enables various processes in narrow wakes or jets to be described (the interaction of the longitudinal transverse velocity components in a jet, cause it to accelerate or decelerate and conservation of the energy of the wake by distortion of its trajectory regardless of viscous dissipation). In particular, conditions are obtained for the wake growth in spiral flows, analogous to the Rayleigh conditions for the instability of two-dimensionally radially symmetric flows relative to three-dimensional short-wave perturbations.  相似文献   

10.
The normal mode instability study of a steady Rossby‐Haurwitz wave is considered both theoretically and numerically. This wave is exact solution of the nonlinear barotropic vorticity equation describing the dynamics of an ideal fluid on a rotating sphere, as well as the large‐scale barotropic dynamics of the atmosphere. In this connection, the stability of the Rossby‐Haurwitz wave is of considerable mathematical and meteorological interest. The structure of the spectrum of the linearized operator in case of an ideal fluid is studied. A conservation law for perturbations to the Rossby‐Haurwitz wave is obtained and used to get a necessary condition for its exponential instability. The maximum growth rate of unstable modes is estimated. The orthogonality of the amplitude of a non‐neutral or non‐stationary mode to the Rossby‐Haurwitz wave is shown in two different inner products. The analytical results obtained are used to test and discuss the accuracy of a numerical spectral method used for the normal mode stability study of arbitrary flow on a sphere. The comparison of the numerical and theoretical results shows that the numerical instability study method works well in case of such smooth solutions as the zonal flows and Rossby‐Haurwitz waves. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

11.
12.
We study the linear stability of traveling wave solutions for the nonlinear wave equation and coupled nonlinear wave equations. It is shown that periodic waves of the dnoidal type are spectrally unstable with respect to co-periodic perturbations. Our arguments rely on a careful spectral analysis of various self-adjoint operators, both scalar and matrix and on instability index count theory for Hamiltonian systems.  相似文献   

13.
Expressions are obtained for the rates of change of the vorticitycomponents about the tangent, principal normal, and binormalof inviscid flow of arbitrary configuration with curvature andtorsion of the particle paths, and non-uniform density. If a steady flow pattern exists the vorticity changes are exactlythose required to carry the fluid particles through it. A smallrotational displacement of a fluid element about each of thesedirections is then considered separately and if the additionalrate of change of vorticity has the same sign and order of magnitudeas the displacement the motion is unstable locally regardlessof the motion elsewhere. The equations depend on four quantities: the curvature, torsion,velocity and vorticity at the point where stability is beinginvestigated. These four quantities define a helical vortex,with the same stability properties, in which the flow is equivalent.There is therefore special merit in studying this case. It is found that a vortex with helical particle paths is unstablefor rotation of the fluid elements about directions which liebetween the vorticity vector and the direction of the axis ofthe motion, when the density is uniform. More generally, themotion is unstable for these disturbances if the stagnationpressure decreases radially outwards. A gradient of axial velocitycomponent always causes some local instability, and the mostlikely (fastest growing) disturbance is one in which rotationsoccur around a line everywhere bisecting the angle between thevorticity vector and the direction of the axis. The analysis shows that in two dimensional circular flow themost unstable disturbances are toroidal and in general curvedflow in two dimensions (without torsion) the most likely disturbancesare rotations around the tangent, i.e. longitudinal rolls. The criteria obtained for local instability do not agree witha Richardson-type criterion for local stability, but both showthe destabilizing effect of a radiating gradient of axial velocity.  相似文献   

14.
A weakly nonlinear stability analysis is performed to search for the effects of compressibility on a mode of instability of the three-dimensional boundary layer flow due to a rotating disk. The motivation is to extend the stationary work of [ 1 ] (hereafter referred to as S90) to incorporate into the nonstationary mode so that it will be investigated whether the finite amplitude destabilization of the boundary layer is owing to this mode or the mode of S90. Therefore, the basic compressible flow obtained in the large Reynolds number limit is perturbed by disturbances that are nonlinear and also time dependent. In this connection, the effects of nonlinearity are explored allowing the finite amplitude growth of a disturbance close to the neutral location and thus, a finite amplitude equation governing the evolution of the nonlinear lower branch modes is obtained. The coefficients of this evolution equation clearly demonstrate that the nonlinearity is destabilizing for all the modes, the effect of which is higher for the nonstationary waves as compared to the stationary waves. Some modes particularly having positive frequency, regardless of the adiabatic or wall heating/cooling conditions, are always found to be unstable, which are apparently more important than those stationary modes determined in S90. The solution of the asymptotic amplitude equation reveals that compressibility as the local Mach number increases, has the influence of stabilization by requiring smaller initial amplitude of the disturbance for the laminar rotating disk boundary layer flow to become unstable. Apart from the already unstable positive frequency waves, perturbations with positive frequency are always seen to compete to lead the solution to unstable state before the negative frequency waves do. Also, cooling the surface of the disk will be apparently ineffective to suppress the instability mechanisms operating in this boundary layer flow.  相似文献   

15.
In this paper, we investigate the transverse linear instability of one-dimensional solitary wave solutions of the coupled system of two-dimensional long-wave–short-wave interaction equations. We show that the one-dimensional solitary waves are linearly unstable to perturbations in the transverse direction if the coefficient of the term associated with transverse effects is negative. This transverse instability condition coincides with the non-existence condition identified in the literature for two-dimensional localized solitary wave solutions of the coupled system.  相似文献   

16.
In this paper a necessary and sufficient condition is found for the existence of non-zero modes, which satisfy the Pridmore–Brown equation and the mass-spring-damper impedance boundary condition. The flowing fluid is assumed to be inviscid, non-slipping and compressible. The mean flow velocity profile in the equation is assumed to be function of y only. The condition which is found defines in fact a dispersion relation, which has to be used in the linear stability analysis of the flow also by Briggs–Bers method. As far as we know, the dispersion relation reported in the present paper is new and it is not an obvious consequence of other results already reported in the literature. The numerical illustration shows that the dispersion-relation is effective and for the considered numerical data reveals the existence of mode type initial perturbations whose amplitude increase exponentially in time showing linear instability. In the same time the numerical illustration reveals the existence of mode type initial perturbations whose amplitude decrease exponentially tending to zero for t tending to plus infinity.  相似文献   

17.
Cellular, low amplitude structures appearing at cylindrical and spherical fronts of gaseous combustion and laser evaporation are described. In the case of a spherical front all these structures are found to be unstable. When the cylindrical front of gaseous combustion is expanded, we must expect the quasi one-dimensional structure homogeneous with respect to the ignorable coordinate to be replaced by a parquet-like pattern of rectangular cells, and later to reach a non-stationary regime. On the cylindrical front of laser evaporation the quasi one-dimensional structure of maximum amplitude is globally stable.

The best known hydrodynamic example of a kinetic problem connected with the formation of dissipative structures i.e. thermodynamically nonequilibrium stationary structures appearing as a result of the development of aperiodic instability in a spatially homogeneous state, are Benard cells /1,2/. New problems of this kind are connected with the instability of plane fronts of laser evaporation of condensed material, and of gaseous combustion /3–5/. The instability is aperiodic and appears at finite values of the wave number of the perturbation representing curvature of a plane front. The development of the instability leads to the formation of a stationary, periodically curved front /3/.

The purpose of this paper is to investigate such structures and their stability on cylindrical and spherical surfaces, and this corresponds to the problem of the propagation of a cylindrical or spherical flame through a gas, and of the laser evaporation of a spherical sample. Problems dealing with dissipative structures on curved surfaces are also of interest in biophysics, where a spherical surface models a cell membrane, while the cylindrical surface models the axon /6/.  相似文献   


18.
This work is devoted to the clarification of the viscous compressible modes particularly leading to absolute instability of the three-dimensional generalized Von Karman's boundary-layer flow due to a rotating disk. The infinitesimally small perturbations are superimposed onto the basic Von Karman's flow to achieve linearized viscous compressible stability equations. A numerical treatment of these equations is then undertaken to search for the modes causing absolute instability within the principle of Briggs–Bers pinching. Having verified the earlier incompressible and inviscid compressible results of [ 1–3 ], and also confirming the correct match of the viscous modes onto the inviscid ones in the large Reynolds number limit, the influences of the compressibility on the subject matter are investigated taking into consideration both the wall insulation and heat transfer. Results clearly demonstrate that compressibility, as the Mach number increases, acts in favor of stabilizing the boundary-layer flow, especially in the inviscid limit, as far as the absolute instability is concerned, although wall heating and insulation greatly enhances the viscous absolutely unstable modes (even more dramatic in the case of wall insulation) by lowering down the critical Reynolds number for the onset of instability, unlike the wall cooling.  相似文献   

19.
We consider the dynamics of a narrow band of weakly unstable and weakly nonlinear perturbations of a plane phase transition surface separating regions of soil saturated with water and with humid air; during transition to instability, the existing stable position of the phase transition surface is assumed to be sufficiently close to another phase transition surface that arises as a result of a turning point bifurcation. We show that such perturbations are described by a Kolmogorov–Petrovskii–Piskunov type equation.  相似文献   

20.
A model is developed to describe the dependence of the turbulent-flame speed on the intensity of an isotropic excitation turbulence prescribed far upstream from the flame for arbitrarily large gas expansion within the flame. For the limit of negligible gas expansion within the flame the new prediction of the present study reduces to an established and recently verified result for isothermal front propagation. It is shown that the turbulent-flame speed varies inversely with the square of the temperature ratio across the flame when the temperature ratio is very large. For typical hydrocarbon flames the results predict generally less substantial rates of decrease of the turbulent-flame speed with increasing heat release. Variations in turbulence kinetic energies and vorticity across the flame and hydrodynamic zones upstream and downstream from the flame are determined as well, accounting for influences of gas expansion and the structure of the excitation turbulence. The results of the present work, which are valid for flame propagation in weakly turbulent flow (where the propagation speed is proportional to the square of the intensity of the excitation turbulence prescribed far upstream from the flame) extend earlier predictions that were limited to relatively small chemical-heat release. The model presented herein does not account for effects of intrinsic flame instability and is appropriate for conditions where influences of buoyancy and flame stretch on flame dynamics are not substantial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号