首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
2.
Arc behavior in 3-Phase AC plasma technology remains poorly explored. This system noticeably differs from the classical DC plasma torches and aims to overcome certain limitations, such as efficiency, equipment cost and reliability. A MHD model of a 3-Phase AC plasma torch was recently developed at Mines-ParisTech. The model does not include the electrodes in the computational domain. In parallel, experiments were conducted using a high-speed video camera shooting 100,000 frames per second. In this paper, the comparison between MHD modeling and experimental results shows that the arc behavior is in line with the results from the MHD model. Particularly, the strong influences of both the electrode jets and Lorentz forces on the arc motion are confirmed. However, some differences between experimental and numerical electrical waveforms are observed and particularly in the current–voltage phase shift. A new model was then developed by integrating the electrodes into the computational domain and adjusting the electrode tip geometry. With this simulation, we were able to reproduce the phase shift, power and voltage values with a good accuracy showing the strong influence of electrode tip geometry on the 3-Phase arc plasma discharge.  相似文献   

3.
Direct current (dc) plasma torch with inter-electrode inserts has the merits of fixed arc length, relative high enthalpy and may show advantages in future plasma processes where stability and controllability are must-have. Energy fluctuations in the plasma may result from power supply ripple, arc length variation, and/or acoustic oscillation. Using an improved power supply with a flat waveform, the characteristics of an argon plasma energy instabilities under reduced pressure were studied by means of simultaneously monitoring the arc voltage and arc current spectrum. Dependence of the arc fluctuation behavior on the plasma generating parameters, such as the current intensity, the plasma gas flow rates and the vacuum chamber pressure were investigated and discussed. Results show that the plasma torch has a typical U-shaped voltage-ampere characteristic (VAC). The correlation between the VAC and the probability of energy distributions was studied. Through pressure measurements at the cathode cavity and the vacuum chamber, the existence of sonic flow in the inter-electrode insert channel was confirmed.  相似文献   

4.
The non-transferred direct current (DC) plasma torch has been widely used in various industrial applications due to its special jet characteristics. The jet characteristics are determined by different factors, including the working parameters, the torch construction, the gas injection angle (GIA) etc. As there is little study on the influence of the GIA on the jet characteristics, experimental study on the GIA’s effects on the jet characteristics has been carried out on a specially designed non-transferred DC plasma torch, whose GIA can be changed by replacing a gas injection component. The arc voltages and thermal efficiencies of the plasma torch, the specific enthalpies and jet lengths of the plasma jets at different working conditions were obtained and analyzed. It has been found that the GIA greatly affects the arc voltage, the thermal efficiency, the specific enthalpy and the jet length. Based on these findings, plasma torch with appropriate GIA could be used to help generating the plasma jet with desired characteristics.  相似文献   

5.
This work was devoted to the study of the dynamic and static behavior of de vortex plasma torch with a well-type cathode (power level below 100 kW). The dynamic behavior of the torch was characterized by the fulctuations of arc voltage and current, plasma jet radiation, and acoustic pressure. Characteristic frequencies of the arc root movement inside the torch were observed. By numerical simulation (with the numerical codeMelodie, it was shown that the position of the erosion diameter) of the axial velocity along the cathode channel near the wall. The static behavior of the torch was inverstigated for different cathode designs. The variations of voltage U with arc current I, gas flow rate G nature of the gas and cathode design were represented by semiempirical relationships established between dimensionless numbers. By dimensional analysis, the behavior of this torch was compared with that of two powerful torches: the Aerospatiale and the Plasma Energy Corporation torches.  相似文献   

6.
The characteristics of the plasma jet emanating from a dc non-transferred plasma torch is affected by many factors including arc current, type of gas, gas flow rate, gas injection configuration and torch geometry. The present work focuses on experimental investigation of the influence of shroud gas injection configuration on the I–V characteristics and electro-thermal efficiency of a dc non-transferred plasma torch operated in nitrogen at atmospheric pressure. The plasma gas is injected into the torch axially and shroud gas is injected through three different nozzles such as normal, sheath and twisted nozzles. The effects of flow rates of plasma/axial gas and arc current on I–V characteristics and electro-thermal efficiency of the torch holding different nozzles are investigated. The I–V characteristics and electro-thermal efficiency of the torch are found to be strongly influenced by the shroud gas injection configuration. The effect of arc current on arc voltage decreases with increasing the axial gas flow rate. At higher axial gas flow rate (>?45 lpm), the I–V characteristics of the plasma torch are similar irrespective of the nozzle used. The variation of electro-thermal efficiency with arc current is almost similar to that of arc voltage with arc current. As expected, the electro-thermal efficiency is increased when the axial gas flow rate is increased and at higher axial gas flow rate, it is not influenced by the arc current and shroud gas configuration. The plasma torch with normal nozzle may be better in the range of operating conditions used in this study.  相似文献   

7.
A special bi-anode plasma torch that can change the anode arc root position without changing working gas flow rate has been developed to investigate the effect of anode arc root position on the behavior of the plasma jet. It has two nozzle-shaped anodes at different axial distances from the cathode tip. The arc root can be formed at anodes either close to the cathode tip (anode I) or far away from it (anode II) to obtain different attachment positions and arc voltages. The characteristics of pure argon plasma jets operated in different anode modes were measured in the field free region by using an emalpy probe, and the thermal efficiency of the torch was determined by measuring the temperature differences between cooling water flowing in and out of the torch. The results show that compared with the normal arc operated in anode I mode, the elongated arc operated in anode II mode significantly reduced the plasma energy loss inside the torch, resulting in a higher temperature and a higher velocity of the plasma jet in the field free region.  相似文献   

8.
An experimental study is conducted to investigate the entrainment characteristics of a turbulent thermal plasma jet issuing from a DC arc plasma torch operating at atmospheric pressure. The mass flow rate of the ambient gas entrained into the turbulent plasma jet is directly measured by use of the so-called “porous-wall chamber” technique. It is shown that a large amount of ambient gas is entrained into the turbulent plasma jet. With the increase of the gas mass flow rate at the plasma jet inlet or the plasma torch exit, the mass flow rate of entrained ambient gas almost linearly increases but its ratio to the jet-inlet mass flow rate decreases. The mass flow rate of the entrained gas increases with the increase of the arc current or jet length. It is also found that using different ways to inject the plasma-forming gas into the plasma torch affects the entrainment rate of the turbulent plasma jet. The entrainment rate expression established previously by Ricou and Spalding (J. Fluid Mech. 11: 21, 1961) for the turbulent isothermal jets has been used to correlate the experimental data of the entrainment rates of the turbulent thermal plasma jet, and the entrainment coefficient in the entrainment rate expression is found to be in range from 0.40 to 0.47 for the turbulent thermal plasma jet under study.  相似文献   

9.
Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 times its diameter could be generated with a DC arc torch by restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including arc channel geometry, gas flow rate, and feeding methods, etc. Influence of flow turbulence at the torch nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent arc jet.  相似文献   

10.
The influence of nozzle length and two process parameters (arc current, mass flow rate) on the plasma cutting arc is investigated. Modeling results show that nozzle length and these two process parameters have essential effects on plasma arc characteristics. Long nozzle torch can provide high velocity plasma jet with high heat flux. Both arc voltage and chamber pressure increase with the nozzle length. High arc current increases plasma velocity and temperature, enhances heat flux and augments chamber pressure and thus, the shock wave. Strong mass flow has pinch effect on plasma arc inside the torch, enhances the arc voltage and power, therefore increases plasma velocity, temperature and heat flux.  相似文献   

11.
在常压下研究了不同等离子体放电模式及反应器结构对氨分解制氢反应的影响.实验中调节反应器结构分别产生了介质阻挡放电和交流弧放电两种放电模式.通过对两种放电模式的放电图像、电压-电流波形和氨分解过程中等离子体区活性物种的发射光谱(OES)研究发现,与介质阻挡放电相比,交流弧放电为局部强放电,具有更高的电源效率和电子密度.因此,在介质阻挡放电中氨气分子大部分通过生成电子激发态物种NH3*,再与载能电子碰撞断裂N―H键进行氨分解反应;而在交流弧放电中载能电子具有更高的平均电子能量,可直接断裂氨气分子的N―H键生成NH2和NH等高活性物种,促进氨分解反应的进行.结果表明,交流弧放电的氨分解效果要明显优于介质阻挡放电.在交流弧放电模式下不同类型反应器对氨气分解转化率由高到低的顺序为:管-管管-板针-板板-板.在输入功率为30 W,气隙间距为6 mm时,管-管交流弧放电的氨气转化率达到60%左右,而板-板介质阻挡放电的氨气转化率仅为4%.  相似文献   

12.
A multi-phase alternating current (AC) arc has been applied to glass melting technology. The large volume discharge produced by a stable multi-phase AC arc is preferable to melt the granulated glass materials. The discharge behavior and the high-temperature region of the plasma can be controlled by the electrode configurations. In this study, the spatial characteristics of the arc discharge were examined by image analysis of high-speed camera. Results show arc existence area is related with electrode configuration. This study provides the useful information of efficient particle treatment in the preferred electrode configuration. However, the electrode erosion is one of the most considerable issues to be solved. The combination of high-speed video camera and band-pass filters was introduced to measure the electrode temperature to investigate the erosion mechanism of the multi-phase AC arc. The dynamic behavior of the electrode vapors in the arc was investigated by using the same high-speed camera system. Results show the tungsten electrode mainly evaporates at the anodic period during AC cycle.  相似文献   

13.
Direct current plasma torches for plasma spraying applications generate electric arc instabilities. The resulting fluctuations of input electrical power hamper a proper control of heat and momentum transfers to materials for coating deposition. This paper gives an overview of major issues about arc instabilities in conventional DC plasma torches. Evidences of arc fluctuations and their consequences on plasma properties and on material treatments are illustrated. Driving forces applied to the arc creating its motion are described and emphasis is put on the restrike mode that depends on the arc reattachment and the boundary layer properties around the arc column. Besides the arc root shown as a key region of instability, the Helmholtz oscillation is also described and accounts for the whole plasma torch domain that can generate pressure fluctuations coupled with voltage ones.  相似文献   

14.
The arc root fluctuations at the anode-nozzle of a d.c. plasma spray torch with a special configuration of the electrodes allowing to work with the same gas flowrate with nozzle diameters ranging from 6 to 10 mm were systematically studied. The plasma gas was Ar/H2 (25 vol % H2), the current was varied between 200 and 600 A and the plasma gas flowrate between 24 and 80 slm. After 30–60 mn working the nozzle wall started to be sufficiently eroded to have a stagnant arc spot which lived until arcing created another one. It was shown that the life time of the upstream arc spots were 30–40 % longer than the downstream ones which could play an important role in the electrode erosion. Dimensional analysis allowed to find a relationship between the nozzle diameter D, the arc current I and gas flow rate G and the mean spot lifetime which is closely connected with the difference between D and the electrical diameter of the arc column. The comparison of voltage signal and light emission at a point of the plasma jet close to the nozzle exit on its axis allowed to determine the mean electrical field within the plasma column and the mean position of the arc root. The comparison with the electrode erosion area for well defined conditions showed a good correlation with the calculated arc root position.  相似文献   

15.
Methane pyrolysis via thermal plasma was investigated experimentally on a 2 kW DC arc plasma setup in argon atmosphere. Two widely applied methane pyrolysis profiles, i.e., pre-mixing methane and argon before fed into plasma torch, and injecting methane into pure argon plasma jet at torch outlet, were compared. Performances of methane pyrolysis regarding to methane conversion, acetylene selectivity, acetylene specific energy requirement (SER), and plasma stability were concluded. Results showed that pre-mixing methane and argon before fed into plasma torch would be efficient in converting methane and acetylene production, with higher conversion of methane and lower SER to acetylene at a given specific energy. Also, methane in arc zone would cause periodic fluctuations of plasma voltage and power, which could be reduced by controlling methane fraction in feed. On the other hand, when methane was injected into argon plasma jet at torch outlet, the energy efficiency in converting methane and producing acetylene would be lower. And the plasma would barely participate in the reaction other than providing heat, but the erosion of electrode was much slower and slighter. It was also validated that the SER of acetylene was limited by the thermal loss of the setup due to size-effect of reactor.  相似文献   

16.
Argon DC plasma jets in stable laminar flow were generated at atmospheric pressure with a specially designed torch under carefully balanced generating conditions. Compared with turbulent jets of short length with expanded radial appearance and high working noise, the laminar jet could be 550 mm in length with almost unchanged diameter along the whole length and very low noise. At gas feeding rate of 120 cm3/s, the jet length increases with increasing arc current in the range of 70–200 A, and thermal efficiency decreases slightly at first and then leveled off. With increasing gas flow rate, thermal efficiency of the laminar jets increases and could reach about 40%, when the arc current is kept at 200 A. Gauge pressure distributions of the jets impinging on a flat plate were measured. The maximum gauge pressure value of a laminar jet at low gas feeding rate is much lower than that of a turbulent jet. The low pressure acting on the material surface is favorable for surface cladding of metals, whereas the high pressure associated with turbulent jets will break down the melt pool.  相似文献   

17.
Numerical modelling of physical properties and processes in an electric arc stabilized by a water vortex (steam torch) has been summarized in this review paper. One-fluid MHD equations are numerically solved for an axisymmetric thermal plasma flow inside a discharge chamber of the steam plasma torch. The steady state solution results are discussed for the range of currents 300–600 A with relatively low steam flow rate of about 0.3 g s?1. The maximum obtained velocities and temperatures—8500 m s?1, 26,300 K, are reported at the centre of the nozzle exit for 600 A. The evaporation of water, i.e. mass flow rate of steam, was predicted from a comparison between the present simulation and experiments. The generated plasma is mildly compressible (M < 0.7) with the inertial forces overwhelming the magnetic, viscous, centrifugal and Coriolis forces with the factor of 103. Our calculations showed that the most significant processes determining properties of the arc are the balance of the Joule heat with radiation and radial conduction losses from the arc. Rotation of plasma column due to the tangential velocity component has a negligible effect on the overall arc performance, however, the rotation of water induces fluctuations in the arc and in the plasma jet with characteristic frequency which is related to the frequency of rotation of water. Reabsorption of radiation occurs at the radial position higher than 2.5 mm from the arc axis. The amount of reabsorbed radiation is between 17 and 28%. LTE conditions are satisfied in the arc column with the 2 mm radius. Comparison between the present simulations and experiments shows good agreement with the current–voltage characteristics, radial velocity and temperature profiles, as well as with the other related numerical simulation.  相似文献   

18.
In this study, time-dependent, one-dimensional modeling of a surface dielectric barrier discharge (SDBD) device, driven by a sinusoidal voltage of amplitude 1–3 kV at 20 kHz, in argon is described. An SDBD device with two Cu-stripe electrodes, covered by the quartz dielectric and with the discharge gap of 20 × 10−3 m, was assumed, and the time-dependent, one-dimensional discharge parameters were simulated versus time across the plasma gap. The plasma device simulated in the given arrangement was constructed and used for biocompatible antibacterial/antimicrobial coating of plasmonic particle aerosol and compared with the coating strategy of the DBD plasma jet. Simulation results showed discharge consists of an electrical breakdown, occurring in each half-cycle of the AC voltage with an electron density of 1.4 × 1010 cm−3 and electric field strength of 4.5 × 105 Vm−1. With SDBD, the surface coating comprises spatially distributed particles of mean size 29 (11) nm, while with argon plasma jet, the nanoparticles are aggregated in clusters that are three times larger in size. Both coatings are crystalline and exhibit plasmonic features in the visible spectral region. It is expected that the particle aerosols are collected under the ionic wind, induced by the plasma electric fields, and it is assumed that this follows the dominant charging mechanisms of ions diffusion. The cold plasma strategy is appealing in a sense; it opens new venues at the nanoscale to deal with biomedical and surgical devices in a flexible processing environment.  相似文献   

19.
We have finally succeeded in producing the plasma jet by use of the surface discharge plasma torch that can be expected to make larger the diameter of torch in the comparatively easy way. It can be checked that the active species in the jet obtained are different depending on the direction of connection, and also it was clearly found that much O and N2 is included in them. Consequently, etching was confirmed at the position of 10 mm from the torch end in the surface treatment of polypropylene film, but etching was not confirmed at the position of 20 mm.  相似文献   

20.
A commercial torch has been modified to introduce an additional anti-vortex and shroud gas flow to counter the detrimental effects brought about by the vortex plasma gas flow which is used to stabilize the cathode arc attachment and to increase the anode life. Deposition efficiency and coating quality are used as criteria to judge the modified versus the nonmodified torch. High-speed videography and computerized image analysis systems are used to determine the particle trajectories, velocities, and the plasma jet geometry. The results show that the additional anti-vortex and shroud gas flow to the torch can keep the particles closer to the torch axis and reduce the amount of entrainment of cold air into the plasma jet. The consequence is that deposition efficiency and coating quality are substantially improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号