首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 965 毫秒
1.
Claw Conditions for Heavy Cycles in Weighted Graphs   总被引:1,自引:0,他引:1  
A graph is called a weighted graph when each edge e is assigned a nonnegative number w(e), called the weight of e. For a vertex v of a weighted graph, dw(v) is the sum of the weights of the edges incident with v. For a subgraph H of a weighted graph G, the weight of H is the sum of the weights of the edges belonging to H. In this paper, we give a new sufficient condition for a weighted graph to have a heavy cycle. A 2-connected weighted graph G contains either a Hamilton cycle or a cycle of weight at least c, if G satisfies the following conditions: In every induced claw or induced modified claw F of G, (1) max{dw(x),dw(y)} c/2 for each non-adjacent pair of vertices x and y in F, and (2) all edges of F have the same weight.  相似文献   

2.
A new sufficient condition for Hamiltonian graphs   总被引:1,自引:0,他引:1  
The study of Hamiltonian graphs began with Dirac’s classic result in 1952. This was followed by that of Ore in 1960. In 1984 Fan generalized both these results with the following result: If G is a 2-connected graph of order n and max{d(u),d(v)}≥n/2 for each pair of vertices u and v with distance d(u,v)=2, then G is Hamiltonian. In 1991 Faudree–Gould–Jacobson–Lesnick proved that if G is a 2-connected graph and |N(u)∪N(v)|+δ(G)≥n for each pair of nonadjacent vertices u,vV(G), then G is Hamiltonian. This paper generalizes the above results when G is 3-connected. We show that if G is a 3-connected graph of order n and max{|N(x)∪N(y)|+d(u),|N(w)∪N(z)|+d(v)}≥n for every choice of vertices x,y,u,w,z,v such that d(x,y)=d(y,u)=d(w,z)=d(z,v)=d(u,v)=2 and where x,y and u are three distinct vertices and w,z and v are also three distinct vertices (and possibly |{x,y}∩{w,z}| is 1 or 2), then G is Hamiltonian.  相似文献   

3.
A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex υ is called the weighted degree of υ. The weight of a cycle is defined as the sum of the weights of its edges. In this paper, we prove that: (1) if G is a 2‐connected weighted graph such that the minimum weighted degree of G is at least d, then for every given vertices x and y, either G contains a cycle of weight at least 2d passing through both of x and y or every heaviest cycle in G is a hamiltonian cycle, and (2) if G is a 2‐connected weighted graph such that the weighted degree sum of every pair of nonadjacent vertices is at least s, then for every vertex y, G contains either a cycle of weight at least s passing through y or a hamiltonian cycle. AMS classification: 05C45 05C38 05C35. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

4.
Let G=(V,E) be a simple connected graph with vertex set V and edge set E. The Wiener index of G is defined by W(G)=∑{x,y}⊆V d(x,y), where d(x,y) is the length of the shortest path from x to y. The Szeged index of G is defined by Sz(G)=∑ e=uvE n u (e|G)n v (e|G), where n u (e|G) (resp. n v (e|G)) is the number of vertices of G closer to u (resp. v) than v (resp. u). The Padmakar–Ivan index of G is defined by PI(G)=∑ e=uvE [n eu (e|G)+n ev (e|G)], where n eu (e|G) (resp. n ev (e|G)) is the number of edges of G closer to u (resp. v) than v (resp. u). In this paper we find the above indices for various graphs using the group of automorphisms of G. This is an efficient method of finding these indices especially when the automorphism group of G has a few orbits on V or E. We also find the Wiener indices of a few graphs which frequently arise in mathematical chemistry using inductive methods.  相似文献   

5.
 Let G be a 2-connected graph with maximum degree Δ (G)≥d, and let x and y be distinct vertices of G. Let W be a subset of V(G)−{x, y} with cardinality at most d−1. Suppose that max{d G(u), d G(v)}≥d for every pair of vertices u and v in V(G)−({x, y}∪W) with d G(u,v)=2. Then x and y are connected by a path of length at least d−|W|. Received: February 5, 1998 Revised: April 13, 1998  相似文献   

6.
A total coloring of a graph G is a coloring of all elements of G, i.e., vertices and edges, in such a way that no two adjacent or incident elements receive the same color. Let L(x) be a set of colors assigned to each element x of G. Then a list total coloring of G is a total coloring such that each element x receives a color contained in L(x). The list total coloring problem asks whether G has a list total coloring. In this paper, we first show that the list total coloring problem is NP-complete even for series-parallel graphs. We then give a sufficient condition for a series-parallel graph to have a list total coloring, that is, we prove a theorem that any series-parallel graph G has a list total coloring if |L(v)|min{5,Δ+1} for each vertex v and |L(e)|max{5,d(v)+1,d(w)+1} for each edge e=vw, where Δ is the maximum degree of G and d(v) and d(w) are the degrees of the ends v and w of e, respectively. The theorem implies that any series-parallel graph G has a total coloring with Δ+1 colors if Δ4. We finally present a linear-time algorithm to find a list total coloring of a given series-parallel graph G if G satisfies the sufficient condition.  相似文献   

7.
Cycles in weighted graphs   总被引:2,自引:0,他引:2  
A weighted graph is one in which each edgee is assigned a nonnegative numberw(e), called the weight ofe. The weightw(G) of a weighted graphG is the sum of the weights of its edges. In this paper, we prove, as conjectured in [2], that every 2-edge-connected weighted graph onn vertices contains a cycle of weight at least 2w(G)/(n–1). Furthermore, we completely characterize the 2-edge-connected weighted graphs onn vertices that contain no cycle of weight more than 2w(G)/(n–1). This generalizes, to weighted graphs, a classical result of Erds and Gallai [4].  相似文献   

8.
The Erdős-Sós conjecture says that a graph G on n vertices and number of edges e(G) > n(k− 1)/2 contains all trees of size k. In this paper we prove a sufficient condition for a graph to contain every tree of size k formulated in terms of the minimum edge degree ζ(G) of a graph G defined as ζ(G) = min{d(u) + d(v) − 2: uvE(G)}. More precisely, we show that a connected graph G with maximum degree Δ(G) ≥ k and minimum edge degree ζ(G) ≥ 2k − 4 contains every tree of k edges if d G (x) + d G (y) ≥ 2k − 4 for all pairs x, y of nonadjacent neighbors of a vertex u of d G (u) ≥ k.  相似文献   

9.
We extend the notion of a defensive alliance to weighted graphs. Let (G,w) be a weighted graph, where G is a graph and w be a function from V(G) to the set of positive real numbers. A non-empty set of vertices S in G is said to be a weighted defensive alliance if ∑xNG(v)∩Sw(x)+w(v)≥∑xNG(v)−Sw(x) holds for every vertex v in S. Fricke et al. (2003) [3] have proved that every graph of order n has a defensive alliance of order at most . In this note, we generalize this result to weighted defensive alliances. Let G be a graph of order n. Then we prove that for any weight function w on V(G), (G,w) has a defensive weighted alliance of order at most . We also extend the notion of strong defensive alliance to weighted graphs and generalize a result in Fricke et al. (2003) [3].  相似文献   

10.
 Suppose G is a graph and T is a set of non-negative integers that contains 0. A T-coloring of G is an assignment of a non-negative integer f(x) to each vertex x of G such that |f(x)−f(y)|∉T whenever xyE(G). The edge span of a T-coloring−f is the maximum value of |f(x) f(y)| over all edges xy, and the T-edge span of a graph G is the minimum value of the edge span of a T-coloring of G. This paper studies the T-edge span of the dth power C d n of the n-cycle C n for T={0, 1, 2, …, k−1}. In particular, we find the exact value of the T-edge span of C n d for n≡0 or (mod d+1), and lower and upper bounds for other cases. Received: May 13, 1996 Revised: December 8, 1997  相似文献   

11.
设G=(V, E; w)为赋权图,定义G中点v的权度dGw(v)为G中与v相关联的所有边的权和.该文证明了下述定理: 假设G为满足下列条件的2 -连通赋权图: (i) 对G中任何导出路xyz都有w(xy)=w(yz); (ii)对G中每一个与K1,3或K1,3+e同构的导出子图T, T中所有边的权都相等并且min{max{dGw(x), dwG(y)}:d(x,y)=2,x,y∈ V(T)}≥ c/2. 那么, G中存在哈密尔顿圈或者存在权和至少为 c 的圈. 该结论分别推广了Fan[5], Bedrossian等人[2]和Zhang等人[7]的相关定理  相似文献   

12.
Let Γ denote a distance-regular graph with diameter d≥3. By a parallelogram of length 3, we mean a 4-tuple xyzw consisting of vertices of Γ such that (x,y)=(z,w)=1, (x,z)=3, and (x,w)=(y,w)=(y,z)=2, where denotes the path-length distance function. Assume that Γ has intersection numbers a 1=0 and a 2≠0. We prove that the following (i) and (ii) are equivalent. (i) Γ is Q-polynomial and contains no parallelograms of length 3; (ii) Γ has classical parameters (d,b,α,β) with b<−1. Furthermore, suppose that (i) and (ii) hold. We show that each of b(b+1)2(b+2)/c 2, (b−2)(b−1)b(b+1)/(2+2bc 2) is an integer and that c 2b(b+1). This upper bound for c 2 is optimal, since the Hermitian forms graph Her2(d) is a triangle-free distance-regular graph that satisfies c 2=b(b+1). Work partially supported by the National Science Council of Taiwan, R.O.C.  相似文献   

13.
Let (G, w) denote a simple graph G with a weight function w : E(G) ← {0, 1, 2}. A path cover of (G, w) is a collection of paths in G such that every edge e is contained in exactly w(e) paths of the collection. For a vertex v, w(v) is the sum of the weights of the edges incident with v; v is called an odd (even) vertex if w(v) is odd (even). We prove that if every vertex of (G, w) is incident with at most one edge of weight 2, then (G, w) has a path cover P such that each odd vertex occurs exactly once, and each even vertex exactly twice, as an end of a path of P. We also prove that if every vertex of (G, w) is even, then (G, w) has a path cover P such that each vertex occurs exactly twice as an end of a path of P. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
The weight w(e) of an edge e = uv of a graph is defined to be the sum of degrees of the vertices u and v. In 1990 P. Erdős asked the question: What is the minimum weight of an edge of a graph G having n vertices and m edges? This paper brings a precise answer to the above question of Erdős. Received July 12, 1999  相似文献   

15.
IfG andH are graphs, let us writeG→(H)2 ifG contains a monochromatic copy ofH in any 2-colouring of the edges ofG. Thesize-Ramsey number r e(H) of a graphH is the smallest possible number of edges a graphG may have ifG→(H)2. SupposeT is a tree of order |T|≥2, and lett 0,t 1 be the cardinalities of the vertex classes ofT as a bipartite graph, and let Δ(T) be the maximal degree ofT. Moreover, let Δ0, Δ1 be the maxima of the degrees of the vertices in the respective vertex classes, and letβ(T)=T 0Δ0+t 1Δ1. Beck [7] proved thatβ(T)/4≤r e(T)=O{β(T)(log|T|)12}, improving on a previous result of his [6] stating thatr e(T)≤Δ(T)|T|(log|T|)12. In [6], Beck conjectures thatr e(T)=O{Δ(T)|T|}, and in [7] he puts forward the stronger conjecture thatr e(T)=O{β(T)}. Here, we prove the first of these conjectures, and come quite close to proving the second by showing thatr e(T)=O{β(T)logΔ(T)}.  相似文献   

16.
In 1990 G. T. Chen proved that if G is a 2-connected graph of order n and 2|N(x) ∪ N(y)| + d(x) + d(y) ≥ 2n − 1 for each pair of nonadjacent vertices x, yV (G), then G is Hamiltonian. In this paper we prove that if G is a 2-connected graph of order n and 2|N(x) ∪ N(y)| + d(x)+d(y) ≥ 2n−1 for each pair of nonadjacent vertices x, yV (G) such that d(x, y) = 2, then G is Hamiltonian.  相似文献   

17.
Consider a simple graph G with no isolated edges and at most one isolated vertex. A labeling w:E(G)→{1,2,…,m} is called product-irregular, if all product degrees pdG(v)=∏evw(e) are distinct. The goal is to obtain a product-irregular labeling that minimizes the maximum label. This minimum value is called the product irregularity strength. The analogous concept of irregularity strength, with sums in place of products, has been introduced by Chartrand et al. and investigated by many authors.  相似文献   

18.
The spectral and Jordan structures of the Web hyperlink matrix G(c)=cG+(1−c)evT have been analyzed when G is the basic (stochastic) Google matrix, c is a real parameter such that 0<c<1, v is a nonnegative probability vector, and e is the all-ones vector. Typical studies have relied heavily on special properties of nonnegative, positive, and stochastic matrices. There is a unique nonnegative vector y(c) such that y(c)TG(c)=y(c)T and y(c)Te=1. This PageRank vector y(c) can be computed effectively by the power method.We consider a square complex matrix A and nonzero complex vectors x and v such that Ax=λx and vx=1. We use standard matrix analytic tools to determine the eigenvalues, the Jordan blocks, and a distinguished left λ-eigenvector of A(c)=cA+(1−c)λxv as a function of a complex variable c. If λ is a semisimple eigenvalue of A, there is a uniquely determined projection N such that limc→1y(c)=Nv for all v; this limit may fail to exist for some v if λ is not semisimple. As a special case of our results, we obtain a complex analog of PageRank for the Web hyperlink matrix G(c) with a complex parameter c. We study regularity, limits, expansions, and conditioning of y(c) and we propose algorithms (e.g., complex extrapolation, power method on a modified matrix etc.) that may provide an efficient way to compute PageRank also with c close or equal to 1. An interpretation of the limit vector Nv and a related critical discussion on the model, on its adherence to reality, and possible ways for its improvement, represent the contribution of the paper on modeling issues.  相似文献   

19.
For a graph G, we denote by dG(x) and κ(G) the degree of a vertex x in G and the connectivity of G, respectively. In this article, we show that if G is a 3‐connected graph of order n such that dG(x) + dG(y) + dG(z) ≥ d for every independent set {x, y, z}, then G contains a cycle of length at least min{d ? κ(G), n}. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 277–283, 2007  相似文献   

20.
A direction–length framework is a pair (G,p) where G=(V;D,L) is a ‘mixed’ graph whose edges are labelled as ‘direction’ or ‘length’ edges and p is a map from V to ℝ d for some d. The label of an edge uv represents a direction or length constraint between p(u) and p(v). Let G + be obtained from G by adding, for each length edge e of G, a direction edge with the same end vertices as e. We show that (G,p) is bounded if and only if (G +,p) is infinitesimally rigid. This gives a characterization of when (G,p) is bounded in terms of the rank of the rigidity matrix of (G +,p). We use this to characterize when a mixed graph is generically bounded in ℝ d . As an application we deduce that if (G,p) is a globally rigid generic framework with at least two length edges and e is a length edge of G then (Ge,p) is bounded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号