首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-Amino-2-quinoxalincarbonitrile 1,4-dioxide (AQCD) is a quinoxaline derivative, which was synthesized by condensation method. AQCD was labeled with 99mTc with labeling yield above 90% investigated by paper chromatography. 99mTc-AQCD was prepared using stannous chloride as reducing agent at pH 7 and 10 min reaction time. 99mTc-AQCD should be freshly prepared, otherwise the yield significantly decreased after 15 min post labeling. Stability study of 99mTc-AQCD reflected the short time stability of Biodistribution study of 99 mTc-AQCD in tumor bearing mice reflected that its uptake in tumor sites in both ascites and solid tumor sites. This uptake of 99mTc-AQCD in tumor sites was sufficient to radioimage the inoculated sites.  相似文献   

2.
A novel electrochemical process to avail clinical grade 99mTc from (n,γ)99Mo has been demonstrated. The electrochemical parameters were optimized to maximize the 99mTc yield with minimal 99Mo contamination. 99Mo/99mTc generators containing up to 29.6 GBq (800 mCi) 99Mo were developed and their performance were extensively evaluated for 10 days without changing the operating conditions. Very high radioactive concentration of 99mTcO4 of acceptable quality, commensurate with hospital radiopharmacy requirements could be availed from the system with >90% yield. The compatibility of the product for the formulation of 99mTc labeled radiopharmaceuticals such as 99mTc-DMSA and 99mTc-EC was found to be satisfactory in terms of high labeling yields. The proposed route represents an important step for enhancing the scope of accessing clinical grade 99mTc from low specific activity (n, γ)99Mo.  相似文献   

3.
In the recent years interests on dihydropyrimidinone and their analogues have increased potentially due to their wide range of pharmacological/biological activities. Synthesis, radiolabeling with technetium-99 m (99mTc) and biological evaluation of 5-etoxycarbonyl-4-phenyl-6-methyl-3,4-dihydro-(1H)-pyrimidine-2-one (DHPM) were studied in this present work. After synthesis complexation of DHPM with 99mTc was carried out using stannous chloride as the reducing agent. The complex (99mTc-DHPM) was characterized by thin layer chromatography, radio-HPLC technique and determination of partition co-efficient. Radiochemical stability and particle size distribution of the complex were also measured. Biodistribution/scintigraphy studies were performed in rats and rabbits to evaluate the pharmacological characteristics of this complex. The radiochemical purity of the complex was over 95% as studied by thin layer chromatography and radio-HPLC. It was stable over 24 h at room temperature. Its partition coefficient indicated that it was a lipophilic complex. According to the European Pharmacopeia, >80% of 99mTc labeled radiopharmaceutical (99mTc-MAA) in the size range 10–50 μm, must be accumulated in the lungs 15 min after intravenous administration. In this study >85% of the 99mTc-DHPM complex in the average size of 40 μm. Biodistribution studies of 99mTc-DHPM in rat revealed that the complex accumulated in the lung with high uptake and good retention after intravenous administration. Scintigraphic studies in rabbit also revealed that most of the administered radiolabeled complex was accumulated in the lungs and after 1 h slowly excreted through the renal system. The lung uptake (ID%/g) was 10.12, 9.67, 8.60 and 5.01 and the lung/liver ratio was 7.49, 2.88, 2.62 and 1.87 at 2, 15, 30 and 60 min post-injection, respectively. These results suggested that 99mTc-DHPM could be suitable as a potential lung perfusion imaging agent. Further studies with 99mTc-DHPM and its derivatives are warranted to develop new 99mTc-labeled imaging agents for clinical applications.  相似文献   

4.
Technetium-99 is one of several long-lived fission products which, when detected in the environment can give an indication of a specific nuclear activity. The most sensitive analytical technique for 99Tc yet reported is by isotopic dilution mass spectrometry with technetium-97 as the yield tracer. A method for the preparation of 97Tc is reported in this paper. 97Tc was obtained by irradiation of a sample of natural ruthenium metal in a high flux reactor. After cooling for 2 years, the technetium was isolated from the sample by technique combining; deposition, solvent extraction, and ion-exchange chromatography techniques. 99mTc and 103Ru were used as radio-tracers for the process. The results showed that more than 70% of the Tc was recovered the decontamination factor is more than 2.3 × 107. The 97Tc was calibrated by isotope dilution mass spectrometry with 99Tc as the yield tracer. The final yield was 29.56 μg of 97Tc suitable for use as a mass spectrometric spike (weight % 97Tc spike: 97Tc, 84.77%; 98Tc, 15.03%; 99Tc, 0.20%).  相似文献   

5.
Bombesin (BNN)-like peptides have very high binding affinity for the gastrin-releasing peptide (GRP) receptor. The goal of the current study was to optimize the labeling conditions of a new 99mTc-radiolabeled BNN-like peptide based on the bifunctional chelating ligand HYNIC using different co-ligands (EDDA and tricine). The radiolabeling conditions (pH, amount of co-ligand, amount of stannous chloride, temperature and reaction time) for newly-formed 99mTc-tricine-HYNIC-Q-Litorin and 99mTc-EDDA-HYNIC-Q-Litorin were optimized and evaluated by RHPLC and RTLC. Radiochemical yields for 99mTc-tricine-HYNIC-Q-Litorin and 99mTc-EDDA-HYNIC-Q-Litorin were 98.0 ± 1.7 and 97.5 ± 2.5%, respectively. When EDDA was used as co-ligand, the labeling of 99mTc-EDDA-HYNIC-Q-Litorin was optimal in the following reaction mixture: HYNIC-peptide: EDDA: 10 μg/5 mg, pH 3, SnCl2 concentration: 12 μg/0.1 mL, reaction temperature: 100 °C, reaction time: 15 min. Besides, the optimum conditions were HYNIC-peptide:tricine: 10 μg/50 mg, pH 5, SnCl2 concentration: 12 μg/0.1 mL, reaction temperature: 100 °C, reaction time: 15 min for preparing 99mTc-tricine-HYNIC-Q-Litorin. The manufactured 99mTc-HYNIC-Q-Litorin conjugates may offer new possibilities for imaging cancer cells expressing bombesin receptors.  相似文献   

6.
The reaction of 99mTc of different oxidation states (+7, +4) with 2-thiouracil and 5-nitrobarbituric acid have been studied at different temperatures, pH and concentrations. The reaction mixtures have been analyzed at different times using thin layer chromatography (TLC) and a radio detector to show the peaks at the plates. 99mTc is obtained from the Mo generators with oxidation state (+7). The use of SnCl2 as a reducing agent gave 99mTc with oxidation state (+4). It is very difficult to separate the complexes formed from the reactions in very small concentration. The percentage of 99mTc and its oxidation state involved in the complexes can be determined. The labeling efficiencies (percentage of complex) in the reaction of 99mTc+7 with 5-nitro-barbituric-acid increases mostly at pH  10. Both oxidation states of 99mTc(+7, +4) can be detected at pH’s 4 and 10, but at pH  4, the reduced form 99mTCO2, is more pronounced. At pH  7 no complexes were detected and most of 99mTc remains as 99mTCO4 . By increasing the ligand concentration, the labeling efficiencies of the complex increases. For the reaction of 99mTc of oxidation states (+4, +7) with 2-thiouracil at different temperatures and analytical times it is concluded that several complexes with different Rf values were observed in equilibrium and most of these complexes were unstable.  相似文献   

7.
To increase the tumor uptake of Val-Gly-Gly (VGG), adenine was introduced into the peptide. N-mercaptoacetyl-VGG-adenine (MAVGG-adenine) and MAVGG were labeled with 99mTc using a solution of SnCl2 and tartaric acid as reducing agent. Biodistribution in mice bearing the S180 tumor was measured and γ imaging was performed. Compared with MAVGG, adenine conjugated MAVGG had higher tumor uptake and tumor to normal tissue ratios, which suggested that the tumor uptake property of a peptide may be improved by introducing a nucleotide base. The high contrasted tumor images of 99mTc-MAVGG-adenine also suggested its potential utility as tumor imaging agent.  相似文献   

8.
F(ab’)2 is the fragment involved in the immunotherapy for scorpion stings and it would be convenient to label it with 99mTc for organ distribution and pharmacokinetics studies. The aim of the present study was to label scorpion antivenom F(ab’)2 with 99mTc keeping its biological activity, integrity and stability. High labeling yield was obtained using stannous chloride and sodium borohydride. Stability, immunoreactivity and integrity of 99mTc-F(ab’)2 was preserved. It was not observed any difference between potencies of unlabeled and labeled antivenom. 99mTc-F(ab’)2 can be a useful tool for use in biodistribution and pharmacokinetics studies on the evaluation of the efficacy of the antivenom against scorpion envenomation.  相似文献   

9.
A conjugate of 6-hydrazinopyridine-3-carboxylic acid (HYNIC) with the amino analogue of metronidazole (MN) was synthesized through a multiple-step reaction. HYNIC-MN could be labeled easily and efficiently with 99mTc using N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine (tricine) and ethylenediamine -N,N′-diacetic acid (EDDA) as coligands to form the 99mTc–HYNIC–MN complex in high yield (>95%). Its partition coefficient indicated that it was a good hydrophilic complex. The tumor cell experiment showed that the 99mTc–HYNIC–MN complex had a certain hypoxic selectivity. The biodistribution studies of 99mTc–HYNIC–MN in Kunming mice bearing S180 tumor showed a favorable tissue distribution profile with high tumor uptake, and low or negligible accumulation in non-target organs, suggesting 99mTc–HYNIC–MN would be a novel potential tumor hypoxia imaging agent.  相似文献   

10.
Pyrroloquinoline quinone (PQQ), an essential nutrient, antioxidant, redox modulator and nerve growth factor found in a class of enzymes called quinoproteins, was labeled with 99mTc by using stannous fluoride (SnF2) method. Radiolabeling qualification, quality control and characterization of 99mTc-PQQ and its biodistribution studies in mice were performed and discussed. Effects of pH values, temperature, time and reducing agents concentration on the radiolabeling yield were investigated. The quality control procedure of 99mTc-PQQ was determined by thin layer chromatography (TLC), radio high-performance liquid chromatography (RHPLC) and paper electrophoresis methods. The average radiolabeling yield was 94 ± 1% under optimum conditions of 0.99 mg of PQQ, 30 μg of SnF2, 0.5 mg of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and 18.5 MBq of Na99mTcO4 at pH 6 and 25 °C with a response volume of 1 ± 0.1 mL. 99mTc-PQQ was stable and anionic. Lipid–water partition coefficient of 99mTc-PQQ was −1.49 ± 0.16. The pharmacokinetics parameters of 99mTc-PQQ were t 1/2α = 18.16 min, t 1/2β = 100.45 min, K 12 = 0.013 min−1, K 21 = 0.017 min−1, K e = 0.016 min−1, AUC (area under the curve) = 1040.78 ID% g−1 min and CL (plasma clearance) = 0.096 mL min−1. The dual-exponential equation was Y = 10.88e−0.038t  + 5.21e−0.0069t . The biodistribution of 99mTc-PQQ was studied in ICR (Institute for Cancer Research 7701 Burhelme Are., Fox Chase, Philadelphia, PA 1911 USA) mice. In vitro autoradiographic studies clearly showed that the 99mTc-PQQ radioactivity accumulated predominantly in the hippocampus and cortex, which had a high density of N-methyl-d-aspartate Receptor (NMDAR). The enrichment can be blocked by NMDAR redox modulatory site antagonists-ebselen (EB) and 99mTc-PQQ is therefore a promising candidate for the molecular imaging of NMDAR. To date, however, there have been no studies characterizing 99mTc-PQQ.  相似文献   

11.
A new formulation of a freeze-dried kit for the labeling of tetrofosmin with technetium-99m has been developed. The kit contains lyophilized mixture of 0.320 mg tetrofosmin [6,9-bis(2-ethoxyethyl)-3,12-dioxa-6,9-diphosphatetradecane], 0.025 mg stannous chloride dihydrate, 5 mg sodium tartrate and 5 mg sodium hydrogen carbonate. The product contains no antimicrobial preservative. When 99mTc pertechnetate up to 6 mL saline containing 200 mCi is added to lyophilized mixture, a lipophilic, cationic 99mTc complex is formed, 99mTc-tetrofosmin. The performance of newly developed kit is compared with commercially available MYOVIEW kit for heart imaging. The patient studies show that the images of heart obtained by 99mTc-tetrofosmin prepared by new formulation are equally good to MYOVIEW.  相似文献   

12.
Celecoxib was labelled effectively with 99mTc. The labeling yield was found to be influenced by the amount of celecoxib, the amount of stannous chloride dihydrate, the reaction time, the temperature and the pH of the reaction mixture. The importance of stannous chloride dihydrate arises from its function as a reducing agent for pertechnetate to form complex celecoxib. The suitable amount required to produce high labeling yield of 99mTc-celecoxib was 500 μg SnCl2·2H2O. The pH of the reaction medium was found to play a significant role in this labeling process. The labeling reaction was performed at a neutral medium (pH 7). The labeling reaction proceeds well at room temperature (25 ± 1 °C) and the complex decomposes by heat. The labeled celecoxib (99mTc-celecoxib) showed a good localization in inflamed foci and a good imaging must be taken 4 h post injection.  相似文献   

13.
Amongst various radionuclides of molybdenum, 90Mo and 99Mo have suitable β energy for clinical uses. In this paper we report separation of 99Mo from 99Mo-99mTc equilibrium mixture. The liquid–liquid extraction technique has been employed using trioctylamine (TOA) diluted in cyclohexane as organic phase and HCl as aqueous phase. At 10−5 M HCl and 0.5 M TOA concentration 99mTc quantitatively transferred to the organic phase leaving 99Mo in the aqueous phase. The developed separation method is efficient and provides very high separation factor.  相似文献   

14.
Tumors such as prostate, small cell lung cancer, breast, gastric and colon cancer are known to overexpress receptors to bombesin (BBN). In this study, a new bombesin analogue was labeled with 99mTc via HYNIC and tricine/EDDA as coligands and investigated further. HYNIC-GABA-Bombesin (7–14) NH2 was synthesized using a standard Fmoc strategy. Labeling with 99mTc was performed at 100 °C for 10 min and radiochemical analysis involved ITLC and HPLC methods. The stability of radiopeptide was checked in the presence of humane serum at 37 °C up to 24 h. The receptor bound internalization and externalization rates were studied in GRP receptor expressing PC-3 cells. Biodistribution of radiopeptide was studied in nude mice bearing PC-3 tumor. Labeling yield of >98% was obtained corresponding to a specific activity of ~2.6 MBq/nmol. Peptide conjugate showed good stability in the presence of human serum. The radioligand showed high and specific internalization into PC-3 cells (14.63 ± 0.41% at 4 h). In biodistribution studies, a receptor-specific uptake was observed in GRP-receptor-positive organs so that after 4 h the uptakes in mouse tumor and pancreas were 1.31 ± 0.18 and 1.2 ± 0.13% ID/g, respectively.  相似文献   

15.
This study examined the applications of novel non-polymer magnetic ferrite nanoparticles (Fe3O4 NPs) labeled with 99mTc-pertechnetate (99mTcO4 ). The radiochemistry, chemistry, and biodistribution of Fe3O4 NPs labeled with 9mTcO4 were analyzed. This paper employed instant thin layer chromatography and magnetic adsorption to evaluate the labeling efficiency and stability of 99mTc-Fe3O4 at various reaction conditions. A scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, laser particle size analyzer, and superconducting quantum interference device magnetometer were used to analyze the physical and chemical properties of the Fe3O4 and 99Tc-Fe3O4 nanoparticles. The biodistribution and excretion of 99mTc-Fe3O4 were also investigated. Radiochemical analyses showed that the labeling efficiency was over 92% after 1 min in the presence of a reducing agent. Hydroxyl and amine groups covered the surface of the Fe3O4 particles. Therefore, 99Tc (VII) reduced to lower oxidation states and might bind to Fe3O4 NPs. The sizes of the 99Tc-Fe3O4 NPs were about 600 nm without ultrasound vibrations, and the particle sizes were reduced to 250 nm under ultrasound vibration conditions. Nonetheless, Fe3O4 NPs and 99Tc-Fe3O4 NPs exhibited superparamagnetic properties, and the saturation magnetization values were about 55 and 47 emu/g, respectively. The biodistribution showed that a portion of the 99mTc-Fe3O4 nanoparticles might embolize in a pulmonary capillary initially; the embolism radioactivity was cleared from the lungs and was then taken up by the liver. 99mTc-Fe3O4 metabolized very slowly only 1–2% of the injected dose (ID) was excreted in urine and about 2.37% ID/g was retained in the liver 4 h after injection. Radiopharmaceutically, 99mTc-Fe3O4 NPs displayed long-term retention, and only 99mTc-Fe3O4 NPs that dissociated to free pertechnetate could be excreted in urine. This research evaluated the feasibility of non-polymer magnetic ferrite NPs labeled with technetium as potential radiopharmaceuticals in nuclear medicine.  相似文献   

16.
2,2′-[(8-hydroxyquinolin-7-yl)methylazanediyl]diacetic acid (HQMADA) was synthesized via reaction of 8-hydroxyquinoline with iminodiacetic acid in presence of paraformaldehyde with a yield of 27%. The obtained compound was well characterized via different analytical techniques. Labeling of the synthesized compound with technetium-99m in pertechnetate form (99mTcO4 ) in the presence of stannous chloride dihydrate was carried out via chelation reaction. The reaction parameters that affect the labeling yield such as HQMADA concentration, stannous chloride dihydrate concentration, pH of the reaction mixture, and reaction time were studied to optimize the labeling conditions. Maximum radiochemical yield of 99mTc-HQMADA complex (91.9%) was obtained by using 1.5 mg HQMADA, 50 μg SnCl2·2H2O, pH 8 and 30 min reaction time. Biodistribution studies in mice were carried out in experimentally induced infection in the left thigh using E. coli. 99mTc-HQMADA complex showed higher uptake (T/NT = 5.5 ± 0.3) in the infectious lesion than the commercially available 99mTc-ciprofloxacin (T/NT = 3.8 ± 0.8). Biodistribution studies for 99mTc-HQMADA complex in Albino mice bearing septic and aseptic inflammation models showed that 99mTc-HQMADA complex able to differentiate between septic and aseptic inflammation.  相似文献   

17.
A conjugate of 6-hydrazinopyridine-3-carboxylic acid (HYNIC) with aminomethylenediphosphonic acid (AMDP) was synthesized through a multiple-step reaction. HYNIC–AMDP could be labeled easily and efficiently with 99mTc using N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine (tricine) as coligand to form the 99mTc–HYNIC–AMDP complex in high yield (> 95%). Its partition coefficient indicated that it was a good hydrophilic complex. The biodistribution studies of 99mTc–HYNIC–AMDP in normal ICR mice showed that this complex had high bone uptake and low or negligible accumulation in non-target organs. As compared with 99mTc–MDP, 99mTc–HYNIC–AMDP had a higher bone uptake and the ratios of bone/blood and bone/muscle at early time after injection, suggesting that it could be potentially useful for bone imaging at an earlier time after injection according to further investigations of the biological behavior of this complex.  相似文献   

18.
Summary The aim of this study was to label exorphin C with 99mTc and to examine its usefulness as opioid receptor binding radiopharmaceutical in Albino Wistar rats. Exorphin C, which is a peptide with 5 aminoacids, was labeled with 99mTc using glucoheptonate (GH) as a bifunctional chelating agent. Labeling efficiency was higher than 98%. The compound was stable for at least 5 hours at room temperature. Mammary tumor bearing Albino Wistar rats were imaged using gamma-camera. Biodistribution studies were also performed. Results demonstrated that 99mTc-glucoheptonate-exorphin C (99mTc-GE) analogs may be useful as a new class of receptor-binding peptides for the diagnosis and therapy of some cancer diseases related with opioid receptor-expressing tissues.  相似文献   

19.
Sentinel lymph node detection is widely used to identify lymph nodes that receive lymphatic drainage from a primary tumor. 99mTc labeled iron oxide nanoparticles were prepared to invent a new colorful radioactive agent for sentinel lymph node detection. Iron oxide nanoparticles were produced by co-precipitation of FeCl3 and FeCl2 in the presence of NaOH. Then iron oxide nanoparticles were labeled with 99mTc. 99mTc labeled nanoparticles (7.4 MBq/0.1 mL) were intradermally injected in the distal hind limb of 16 rabbits. Dynamic and static lymphoscintigraphic images were taken for 24 h. Labeling efficiencies of 99mTc-iron oxide nanoparticles were over 99%. Their sizes are between 50 and 60 nm. 99mTc-iron oxide nanoparticles were accumulated in the popliteal lymph node in 11 of 16 rabbits (69%). Retention of nanoparticles in the popliteal lymph node was obvious at from 2nd through 24th hours. The radioactive lymph node was identified easily by gamma probe. The popliteal lymph node was excised and established for radioactivity and black dye. These black and radioactive nanoparticles may be potential agent successfully used for sentinel lymph node detection.  相似文献   

20.
The dimercaptosuccinic acid metronidazole ester (DMSAMe) was synthesized and radiolabeled with 99mTc to form the 99mTc-DMSAMe complex in high yield. The radiochemical purity of the 99mTc-DMSAMe complex was over 90%, as measured by TLC and by HPLC, without any notable decomposition at room temperature over a period of 6 h. Its partition coefficient indicated that it was a lipophilic complex. The tumor cell experiment and the biodistribution in mice bearing S 180 tumor showed that the 99mTc-DMSAMe complex had a certain hypoxic selectivity and accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time, suggesting it would be a possible tumor hypoxia imaging agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号