首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Large-amplitude solitary waves are investigated in ion-beam plasma system. The Sagdeev’s pseudopotential is determined in terms of the ion speedu. It is found that there exists a critical value ofu 0, the value ofu at (u′)2 = 0, beyond which the solitary waves cease to exist. The critical value also depends on σ (the ion temperature) or σb (the ion beam temperature). One of the author (PC) is grateful to UGC, India for the financial support under SAP(No F.510/8/DRS/2004(SAP-1)).  相似文献   

2.
Ion-acoustic solitary waves are investigated in a cold collisionless relativistic plasma. Electron inertia is also considered. The Sagdeevs pseudopotential is determined in terms of u, the ion speed and depends on v, the velocity of the wave. It is found that there exists a critical value of u 1 ( 0), the value of u at which (u)2 = 0, beyond which the solitary waves cease to exist. The critical value also depends on the relativistic parameter u 0/c when u 0 is the drift velocity of the ion and c is the speed of light.  相似文献   

3.
A.A. Mamun 《Physics letters. A》2008,372(9):1490-1493
The nonlinear propagation of dust-ion-acoustic (DIA) waves in an adiabatic dusty plasma (containing adiabatic inertial-less electrons, adiabatic inertial ions, and negatively charged static dust) is investigated by the pseudo-potential approach. The combined effects of adiabatic electrons and negatively charged static dust on the basic properties (critical Mach number, amplitude, and width) of small as well as arbitrary amplitude DIA solitary waves are explicitly examined. It is found that the combined effects of adiabatic electrons and negatively charged static dust significantly modify the basic properties (critical Mach number, amplitude, and width) of the DIA solitary waves. It is also found that due to the effect of adiabaticity of electrons, negative DIA solitary waves [which are found to exist in a dusty plasma (containing isothermal electrons, cold ions, and negatively charged static dust) for α=zdnd0/ni0>2/3, where zd is the number of electrons residing onto a dust grain surface, nd0 is the constant (static) dust number density and ni0 is the equilibrium ion number density] disappears, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA solitary waves for any possible set of dusty plasma parameters [0?α<1 and 0?σ=Ti0/Te0?1, where Ti0 (Te0) is electron (ion) temperature at equilibrium].  相似文献   

4.
An adiabatic hot dusty plasma (containing non-inertial adiabatic electron and ion fluids, and negatively charged inertial adiabatic dust fluid) is considered. The basic properties of arbitrary amplitude dust-acoustic (DA) solitary waves, which exist in such an adiabatic hot dusty plasma, are explicitly examined by the pseudo-potential approach. To compare the basic properties (critical Mach number, amplitude and width) of the DA solitary waves observed in a dusty plasma containing adiabatic electron, ion and dust fluids with those observed in a dusty plasma containing isothermal electron and ion fluids and adiabatic dust fluid, it has been found that the adiabatic effect of inertia-less electron and ion fluids has significantly modified the basic properties of the DA solitary waves, and that on the basic properties of the DA solitary waves, the adiabatic effect of electron and ion fluids is much more significant than that of the dust fluid.  相似文献   

5.
W. Masood 《Physics letters. A》2009,373(16):1455-1459
Linear and nonlinear propagation characteristics of quantum drift ion acoustic waves are investigated in an inhomogeneous two-dimensional plasma employing the quantum hydrodynamic (QHD) model. In this regard, the dispersion relation of the drift ion acoustic waves is derived and limiting cases are discussed. In order to study the drift ion acoustic solitons, nonlinear quantum Kadomstev-Petviashvilli (KP) equation in an inhomogeneous quantum plasma is derived using the drift approximation. The solution of quantum KP equation using the tangent hyperbolic (tanh) method is also presented. The variation of the soliton with the quantum Bohm potential, the ratio of drift to soliton velocity in the co-moving frame, , and the increasing magnetic field are also investigated. It is found that the increasing number density decreases the amplitude of the soliton. It is also shown that the fast drift soliton (i.e., v*>u) decreases whereas the slow drift soliton (i.e., v*<u) increases the amplitude of the soliton. Finally, it is shown that the increasing magnetic field increases the amplitude of the quantum drift ion acoustic soliton. The stability of the quantum KP equation is also investigated. The relevance of the present investigation in dense astrophysical environments is also pointed out.  相似文献   

6.
Existence of large amplitude stationary solitary wave structures in an unmagnetized electron-positron (e-p) plasma is studied using a quantum hydrodynamic (QHD) model that includes the quantum force (tunnelling) associated with the Bohm potential and the Fermi-dirac pressure law. It is found that in a quasi-neutral pair (e-p) plasma, where the dispersion is only due to the the quantum tunnelling effects, the large amplitude stationary solitary structure exists only when the normalized Mach speed,M <√2. Such solitary structures do not exist in absence of the Bohm potential term in an unmagnetized quasineutral pair (e-p) plasma. The system is shown to support only rarefactive stationary solitary waves. For such waves the amplitude, being independent of the quantum parameter H (the ratio of the electron plasmon to electron Fermi energy), decreases with the Mach number M, whereas the width increases with both M and H. The present theory is applicable to analyze the formation of localized coherent solitary structures at quantum scales in dense astrophysical objects as well as in intense laser fields.  相似文献   

7.
8.
Using the fluid model for the nonlinear response of ions, we have studied the nonlinear scattering of an electromagnetic ion cyclotron wave off the ion acoustic wave in a plasma. The low frequency nonlinearity arises through the parallel ponderomotive force on ions and the high frequency nonlinearity arises through the nonlinear current density of ions. For a typical nonisothermal plasma (T e/T i∼10) the threshold for this instability in a uniform plasma is ∼1mW/cm2. At power densities ≳102 W/cm2, the growth rate for backscatter turns out to be ∼104s−1.  相似文献   

9.
The effect of higher-order nonlinearity on dust acoustic solitary waves is studied taking into account the dust-charge variation. The model of charge fluctuation, taken here, is of the formI e+I i=0,I e andI i being the electronic and ionic currents. The dust charge is determined self consistently from the current-balance equation. It is found that the higher-order correction modifies the amplitude and width of the dust acoustic solitary waves. The effect of dust-charge streaming is also discussed.  相似文献   

10.
This paper reports the effect of helium percentage variation in a capacitive RF helium-nitrogen mixture plasma on various plasma parameters and concentration of nitrogen active species (N2(C3Π u) and N2 +(B2Σ u +)). Langmuir probe is used for determination of electron energy distribution functions, effective electron temperature, plasma potential and electron density. Optical emission spectroscopy is used for determination of electron temperature from Boltzmann's plot of He–I lines and the relative changes in the concentration of active species by measuring the emission intensities of nitrogen (0-0) bands of the second positive and the first negative systems. The results demonstrate that electron temperature, electron density and concentration of active species increase significantly with increase in helium percentage in the mixture and RF power.  相似文献   

11.
Helium, hydrogen, and their isotopes are the simplest monoatomic and diatomic molecules. It is relatively easy to describe their properties using the basic principles of quantum mechanics. In condensed matter physics, hydrogen and helium serve as the models for the condensed matter properties at extreme conditions so that both experi- mental and theoretical physicists pay much attention to the study of their properties[1], especially the insulator-metal transition of hydrogen[2]. The aim to st…  相似文献   

12.
Head-on collision between two ion acoustic solitary waves in a Thomas-Fermi plasma containing degenerate electrons and positrons is investigated using the extended Poincaré-Lighthill-Kuo (PLK) method. The results show that the phase shifts due to the collision are strongly dependent on the positron-to-electron number density ratio, the electron-to-positron Fermi temperature ratio and the ion-to-electron Fermi temperature ratio. The present study might be helpful to understand the excitation of nonlinear ion-acoustic solitary waves in a degenerate plasma such as in superdense white dwarfs.  相似文献   

13.
New exact results are obtained for relativistic acceleration of test positive ions in the laminar zone of a planar electron sheath evolving from an initially mono-energetic electron distribution. The electron dynamics is calculated against the background of motionless foil ions. The limiting gamma-factor γp∞ of accelerated ions is shown to be determined primarily by the values of the ion-electron charge-over-mass ratio μ=meZp/mp and the initial gamma-factor γ0 of the accelerated electrons. For μ> 1/8 a test ion always overtakes the electron front and attains γp∞> γ0. For μ< 1/8 a test ion can catch up with the electron front only when γ0 is above a certain critical value γcr, which for μ≪1 can most often be evaluated as . In this model the protons and heavier test ions, for which γcr> 10398 is enormous, always lag behind the front edge of the electron sheath and have γp∞< γ0; for their maximum energy an appropriate intermediate asymptotic formula is derived. The domain of applicability of the laminar-zone results is analyzed in detail.  相似文献   

14.
We consider front solutions of the Swift–Hohenberg equation ∂ t u= -(1+ ∂ x 2)2 u + ɛ2 u -u 3. These are traveling waves which leave in their wake a periodic pattern in the laboratory frame. Using renormalization techniques and a decomposition into Bloch waves, we show the non-linear stability of these solutions. It turns out that this problem is closely related to the question of stability of the trivial solution for the model problem ∂ t u(x,t) = ∂ x 2 u (x,t)+(1+tanh(x-ct))u(x,t)+u(x,t) p with p>3. In particular, we show that the instability of the perturbation ahead of the front is entirely compensated by a diffusive stabilization which sets in once the perturbation has hit the bulk behind the front. Received: 23 February 2001 / Accepted: 27 August 2001  相似文献   

15.
We have calculated numerically the temporal evolution of the nonlinear reflection coefficient R of an overdense plasma layer by solving the system of partial differential equations consisting of the wave equation for the slowly varying amplitude of the electric field and the hydrodynamic equations for the ion motion, including a ponderomotive force term. In dependence of the (normalized) amplitude of the incident wave uA two regimes exist: Below a critical amplitude uA* ? 1 the reflection coefficient is approximately independent on the amplitude uA and temporally constant. In the opposite case uA>uA*, on the other hand, ‖R‖2 decreases slowly with time down to a minimum value and after that it increases rapidly to the initial value. We think, that our results are important to interpret the anomalous reflectivity observed in some experiments when strong electromagnetic waves are incident on an overdense plasma.  相似文献   

16.
Rate constants for electron-vibrational energy exchange Ar(3 P 2) + N2(X 1Σ g +, ν = 0) → Ar(1 S 0) + N2(C 3Π u , ν′), where ν′ = 0, 1, 2, were calculated. Calculations were performed taking into account the presence of a resonance in electron scattering by N2(X 1Σ g +). As a result, the interaction of Ar(3 P 2) with N2(X 1Σ g +, ν = 0) was characterized by attraction and, in the end, intersection of electron-vibrational potential surfaces correlating with Ar(3 P 2) + N2(X 1Σ g +, ν = 0) and Ar(1 S 0) + N2(C 3Π u , ν′) at interparticle distances of 2.5–3.5 ?. Exchange interaction at which electron-vibrational transitions in the region of intersection of electron-vibrational transitions in the region of intersection of electron-vibrational potential surfaces accompanied by spin exchange were induced was calculated by the asymptotic method. The rate constants determined at 300–600 K were on the order of 10−11−10−12 cm3/s and weakly increased as the temperature grew. Mainly the C 3Π u , ν′ = 0 state of the N2 molecule was populated. The calculation results were in satisfactory agreement with the experimental data obtained at 300 K.  相似文献   

17.
We show that the family of solitary waves (1-solitons) of the Korteweg-de Vries equation $$\partial _t u + u\partial _x u + \partial _x^3 u = 0 ,$$ is asymptotically stable. Our methods also apply for the solitary waves of a class of generalized Korteweg-de Vries equations, $$\partial _t u + \partial _x f(u) + \partial _x^3 u = 0 .$$ In particular, we study the case wheref(u)=u p+1/(p+1),p=1, 2, 3 (and 3<p<4, foru>0, withfC 4). The same asymptotic stability result for KdV is also proved for the casep=2 (the modified Korteweg-de Vries equation). We also prove asymptotic stability for the family of solitary waves for all but a finite number of values ofp between 3 and 4. (The solitary waves are known to undergo a transition from stability to instability as the parameterp increases beyond the critical valuep=4.) The solution is decomposed into a modulating solitary wave, with time-varying speedc(t) and phase γ(t) (bound state part), and an infinite dimensional perturbation (radiating part). The perturbation is shown to decay exponentially in time, in a local sense relative to a frame moving with the solitary wave. Asp→4?, the local decay or radiation rate decreases due to the presence of aresonance pole associated with the linearized evolution equation for solitary wave perturbations.  相似文献   

18.
Recently published excitation functions in proton-proton (pp) elastic scattering observables in the laboratory energy range 0.5-2.5GeV provide an excellent data base to establish firm upper limits on the elasticities ηel = Γeltot of possible isovector resonant contributions to the nucleon-nucleon (NN) system. Such contributions have been predicted to arise from dibaryonic states, with c.m. masses between 2.1-2.9GeV/c2, but have not been confirmed experimentally. A method to determine quantitatively the maximum value of ηel compatible with experimental data is presented. We use energy-dependent phase shift fits to the pp data base to model the non-resonant interaction. Based upon the differential cross-section data measured by the EDDA Collaboration an unbiased statistical test is constructed to obtain upper limits on ηel, that exclude larger values with a 99% confidence level. Results in the c.m. mass range 2.05-2.85GeV/c2 and total widths of 10-100MeV/c2 in the partial waves 1S0, 1D2, 3P0, 3P1, and 3F3 are presented and discussed.  相似文献   

19.
Fractional independent yields of fission products in the thermal neutron-induced fission of233U,235U,239Pu,241Pu and in the spontaneous fission of252Cf have been correlated with the neutron-to-proton ratio of the fission products. The yields of the products from a fissioning system, when plotted as a function of neutron-to-proton (N/Z) ratio of fission preducts, fall on two Gaussian distribution corresponding to light and heavy fission products. The centroids of the distribution or the most probable value of neutron-to-proton ratio is found to be very close to theN/Z of the fissioning nucleus. From the most probable value ofN/Z the various parameters of charge distribution e.g. most probable massA p, most probable chargeZ p, the mass dispersionσ Aand the charge dispersionσ Zhave been obtained and are in good agreement with the experimental values ofA pandZ p.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号