首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Two new compounds, 7'-(3',4'-dihydroxyphenyl)-N-[(4-methoxyphenyl)ethyl]propenamide (4), and 7'-(4'-hydroxy,3'-methoxyphenyl)-N-[(4-butylphenyl)ethyl]propenamide (5) have been isolated from Cuscuta reflexa along with five known compounds, 6,7-dimethoxy-2H-1-benzopyran-2-one (1), 3-(3,4-dihydroxyphenyl)-2-propen-1-ethanoate (2), 6,7,8-trimethoxy-2H-1-benzopyran-2-one (3), 3-(4-O-beta-D-glucopyranoside-3,5-dimethoxyphenyl)-2-propen-1-ol (6), 2-(3-hydroxy-4-methoxyphenyl)-3,5-dihydroxy-7-O-beta-D-glucopyranoside-4H-1-benzopyrane-4-one (7), reported for the first time from this species. Structures of these compounds were determined by spectral analysis. These compounds showed strong inhibitory activity against alpha-glucosidase.  相似文献   

2.
A pair of new enantiomeric neolignans, ethyl 3-[(2R,3S)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl] propanoate (+) (1) and ethyl 3-[(2S,3R)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl] propanoate (-) (1), together with a pair of known enantiomeric neolignans (+) (2) and (-) (2), as well as five known lignans (3-7) were isolated from the ethanol extract of Lobelia chinensis. Their structures were elucidated on the basis of extensive spectroscopic analyses, including 1D and 2D NMR, HR-ESI-MS and CD spectra.  相似文献   

3.
Azo coupling of diazonium salts derived from alkyl (4-aminophenyl)carbamates with ethyl α-methylacetoacetate gave ethyl 5-alkoxycarbonylamino-1H-indole-2-carboxylates. The condensation of aminophenylcarbamates with aromatic aldehydes in ethanol afforded the corresponding Schiff bases. Cyclohexyl {4-[(4-methoxyphenyl)methylidene]aminophenyl}carbamate reacted with chloroacetyl chloride in dioxane in the presence of triethylamine to produce cyclohexyl {4-[3-chloro-2-(4-methoxyphenyl)-4-oxoazetidin-1-yl]phenylcarbamate, and the reaction of benzyl {4-[(4-nitrophenyl)methylidene]aminophenyl}carbamate with sulfanylacetic acid in DMF led to the formation of benzyl {4-[2-(4-nitrophenyl)-4-oxo-1,3-thiazolidin-3-yl]-phenyl}carbamate.  相似文献   

4.
Zinc complexes of three new amide-appended ligands have been prepared and isolated. These complexes, [(dpppa)Zn](ClO4)2 (4(ClO4)2; dpppa = N-((N,N-diethylamino)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), [(bdppa)Zn](ClO4)2 (6(ClO4)2; bdppa = N,N-bis((N,N-diethylamino)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)amine), and [(epppa)Zn](ClO4)2 (8(ClO4)2; epppa = N-((2-ethylthio)ethyl)-N-((6-pivaloylamido-2-pyridyl)methyl)-N-((2-pyridyl)methyl)amine), have been characterized by X-ray crystallography (4(ClO4)2 and 8(ClO4)2), 1H and 13C NMR, IR, and elemental analysis. Treatment of 4(ClO4)2 or 8(ClO4)2 with 1 equiv of Me4NOH.5H2O in methanol-acetonitrile (5:3) results in amide methanolysis, as determined by the recovery of primary amine-appended forms of the chelate ligand following removal of the zinc ion. These reactions proceed via the initial formation of a deprotonated amide intermediate ([(dpppa-)Zn]ClO4 (5) and [(epppa-)Zn]ClO4 (9)) which in each case has been isolated and characterized (1H and 13C NMR, IR, elemental analysis). Treatment of 6(ClO4)2 with Me4NOH.5H2O in methanol-acetonitrile results in the formation of a deprotonated amide complex, [(bdppa-)Zn]ClO4 (7), which was isolated and characterized. This complex does not undergo amide methanolysis after prolonged heating in a methanol-acetonitrile mixture. Kinetic studies and construction of Eyring plots for the amide methanolysis reactions of 4(ClO4)2 and 8(ClO4)2 yielded thermodynamic parameters that provide a rationale for the relative rates of the amide methanolysis reactions. Overall, we propose that the mechanistic pathway for these amide methanolysis reactions involves reaction of the deprotonated amide complex with methanol to produce a zinc methoxide species, the reactivity of which depends, at least in part, on the steric hindrance imparted by the supporting chelate ligand. Amide methanolysis involving a zinc complex supported by a N2S2 donor chelate ligand (3(ClO4)2) is more complicated, as in addition to the formation of a deprotonated amide intermediate free chelate ligand is present in the reaction mixture.  相似文献   

5.
A series of 9-isopropylpurine derivatives bearing 4-methoxyphenyl, 4-methoxybenzyl, (4-methoxyphenyl)ethynyl and 2-(4-methoxyphenyl)ethyl groups in positions 2 and 6 were prepared as carba-analogues of antimitotic myoseverin. Cross-coupling reactions of 2,6-dichloro-9-isopropylpurine (1) with one equivalent of (4-methoxyphenyl)boronic acid or (4-methoxybenzyl)zinc chloride gave regioselectively the 6-substituted 2-chloropurines which were used for another cross-coupling reaction with a second equivalent of the organometallic reagent. The Sonogashira reaction of 1 with 4-(methoxyphenyl)ethyne gave 2,6-bis[(4-methoxyphenyl)ethynyl]-9-isopropylpurine that was hydrogenated to 2,6-bis[2-(4-methoxyphenyl)ethyl]-9-isopropylpurine. Regioselectivity of the couplings was proved by means of 1H-15N HMBC experiments. 2,6-Bis[(4-methoxyphenyl)ethynyl]-9-isopropylpurine showed considerable cytostatic activity, while the other compounds were inactive.  相似文献   

6.
Microbial metabolism of the cancer chemopreventive agent, curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,6-diene-3,5-dione] (1) with Pichia anomala (ATCC 20170) yielded four major metabolites, 5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3-one (2), 5-hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-(4-hydroxyphenyl)heptan-3-one (3), 1,7-bis(4-hydroxy-3-methoxyphenyl)heptan-3,5-diol (4), 5-hydroxy-1,7-bis(4-hydroxyphenyl)heptane-3-one (5) and two minor products, 1-(4-hydroxy-3-methoxyphenyl)-7-(4-hydroxyphenyl)heptane-3,5-diol (6) and 1,7-bis(4-hydroxyphenyl)heptane-3,5-diol (7). The structures of compounds 2-5 were established on the basis of spectroscopic data. Compounds 6 and 7 were assigned tentative structures.  相似文献   

7.
The BF(3).Et(2)O-promoted Diels-Alder addition of 1-acetylvinyl RADO(Et)-ate (RADO(Et)-ate = 3-ethyl-2-oxo-6,8-dioxa-3-azabicyclo[3.2.1]octane-7-exo-carboxylate) to 1-(dimethoxymethyl)-2,3,5,6-tetramethylidene-7-oxabicyclo[2.2.1]heptane led to one major monoadduct that added to 1,2-didehydrobenzene and was converted into (-)-4-demethoxy-7-deoxydaunomycinone and (2R)-12-acetoxy-2-acetyl-5-(bromomethyl)-1,2,3,4-tetrahydronaphthacen-2-yl RADO(Et)-ate. The latter compound was used to construct (8R)-8-acetyl-6,8-dihydroxy-11-[[(3'-[(aminopropyl)oxy]-, -4'-[(aminobutyl)oxy], and -5'-[(aminopentyl)oxy]methyl]-7,8,9,10-tetrahydronaphthacene-5,12-dione hydrochloride (-)-8, (-)-9, (-)-10, respectively, as well as (8R)-8-acetyl-6,8-dihydroxy-11- [[[2'-[(3"-aminopropyl)amino]ethyl]oxy]- ((-)-11) and -[[3'-[(3"-aminopropyl)amino]propyl]oxy]methyl]-7,8,9, 10-tetrahydronaphthacene-5,12-dione hydrochloride ((-)-12). (8R)-8-Acetyl-6,8-dihydroxy-11-[[(alpha-L-daunosaminyl)oxy]methyl]-7,8,9,10-tetrahydronaphthacene-5,12-dione hydrochloride ((-)-13), a mimic of idarubicin, was also prepared. Absorbance and fluorescence titration experiments showed (-)-8, (-)-9, and (-)-10 to intercalate calf thymus DNA whereas (-)-11, (-)-12, and (-)-13 did not. The best intercalator was (-)-9 (K(b) = (1.1 +/- 0.1) x 10(5) M(-)(1)) with the [(4'-aminobutyl)oxy]methyl chain. Inhibition of topoisomerase II-induced DNA strand religation was observed for (-)-8 at a concentration of 50 &mgr;M.  相似文献   

8.
The base-catalyzed alkylation of rac.-trans-tetrahydro-6-hydroxy-7-(4-methoxyphenyl)-1,4-thiazepin-5(2H)-one ( 1 ) with dimethylaminoethyl chloride in dimethyl sulfoxide provided predominantly rac.-trans-tetrahydro-6-hydroxy-4-[(2-dimethylamino)ethyl]-7-(4-methoxyphenyl)-1,4-thiazepin-5(2H)-one ( 2 ) and in addition, 2,3-dihydro-4-[2-(dimethylamino)-ethyl]-7-(4-methoxyphenyl)-1,4-thiazepin-5(4H)-one ( 3 ). A plausible mechanism is postulated for the dehydration of the rac.-trans-amide 2 .  相似文献   

9.
(7-Hydroxy-2-oxo-2H-chromen-4-yl)-acetic acid hydrazide (2) was prepared from (7-hydroxy-2-oxo-2H-chromen-4-yl)-acetic acid ethyl ester (1) and 100% hydrazine hydrate. Compound 2, is the key intermediate for the synthesis of several series of new compounds such as Schiff's bases 3a-l, formic acid N'-[2-(7-hydroxy-2-oxo-2H- chromen-4-yl)acetyl] hydrazide (4), acetic acid N'-[2-(7-hydroxy-2-oxo-2H-chromen-4- yl)-acetyl] hydrazide (5), (7-hydroxy-2-oxo-2H-chromen-4-yl)-acetic acid N'-[2-(4- hydroxy-2-oxo-2H-chromen-3-yl)-2-oxoethyl] hydrazide (6), 4-phenyl-1-(7-hydroxy-2- oxo-2H-chromen- 4-acetyl) thiosemicarbazide (7), ethyl 3-{2-[2-(7-hydroxy-2-oxo-2H- chromen-4-yl)-acetyl]hydrazono}butanoate (8), (7-hydroxy-2-oxo-2H-chromen-4-yl)- acetic acid N'-[(4-trifluoromethylphenylimino)methyl] hydrazide (9) and (7-hydroxy-2- oxo-2H-chromen-4-yl)acetic acid N'-[(2,3,4-trifluorophenylimino)-methyl] hydrazide (10). Cyclo- condensation of compound 2 with pentane-2,4-dione gave 4-[2-(3,5- dimethyl-1H-pyrazol-1-yl)-2-oxoethyl]-7-hydroxy-2H-chromen-2-one (11), while with carbon disulfide it afforded 7-hydroxy-4-[(5-mercapto-1,3,4-oxadiazol-2-yl)methyl]-2H- chromen-2-one (12) and with potassium isothiocyanate it gave 7-hydroxy-4-[(5- mercapto-4H-1,2,4-triazol-3-yl)methyl]-2H-chromen-2-one (14). Compound 7 was cyclized to afford 2-(7-hydroxy-2-oxo-2H-chromen-4-yl)-N -(4-oxo-2-phenylimino- thiazolidin-3-yl) acetamide (15).  相似文献   

10.
The synthesis, electrochemistry, and optical spectroscopy of an extensive series of cofacial bis[(porphinato)zinc(II)] compounds are reported. These species were synthesized using sequential palladium-catalyzed cross-coupling and cobalt-mediated [2+2+2] cycloaddition reactions. This modular methodology enables facile control of the nature of macrocycle-to-macrocycle connectivity and allows unprecedented modulation of the redox properties of face-to-face porphyrin species. We report the synthesis of 5,6-bis[(5',5'-10',20'-bis[4-(3-methoxy-3-methylbutoxy)phenyl]porphinato)zinc(II)]indane (1), 5,6-bis[(2'-5',10',15',20'-tetraphenylporphinato)zinc(II)]indane (2), 5-([2'-5',10',15',20'-tetraphenylporphinato]zinc(II))-6-[(5"-10',20'-bis[4-(3-methoxy-3-methylbutoxy)phenyl]porphinato)zinc(II)]indane (3), 5-([2'-5',10',15',20'-tetrakis(trifluoromethyl)porphinato]zinc(II))-6-[(5' '-10' ',20' '-bis[4-(3-methoxy-3-methylbutoxy)phenyl]porphinato)zinc(II)]indane (4), 5-(2'-5',10',15',20'-[tetrakis(trifluoromethyl)porphinato]zinc(II))-6-[(2'-5',10',15',20'-tetraphenylporphinato)zinc(II)]indane (5), 5,6-bis([2'-5',15'-diphenyl-10',20'-(trifluoromethyl)porphinato]zinc(II))indane (6), and 5,6-bis([2'-5',10',15',20'-tetrakis(trifluoromethyl)porphinato]zinc(II))indane (7); 4-7 define the first examples of cofacial bis[(porphinato)metal] compounds in which sigma-electron-withdrawing perfluoroalkyl groups serve as macrocycle substituents, while 2, 6, and 7 constitute the first such structures that possess a beta-to-beta linkage topology. Cyclic voltammetric studies show that the electrochemically determined HOMO and LUMO energy levels of these cofacial bis(porphinato) complexes can be lowered by 780 and 945 mV, respectively, relative to the archetypal members of this class of compounds; importantly, these orbital energy levels can be modulated over well-defined increments throughout these wide potentiometric domains. Analyses of these cofacial bis[(porphinato)metal] potentiometric data, in terms of the absolute and relative frontier orbital energies of their constituent [porphinato]zinc(II) building blocks, as well as the nature of macrocycle-to-macrocycle connectivity, provide predictive electronic structural models that rationalize the redox behavior of these species.  相似文献   

11.
Russian Chemical Bulletin - The work describes the synthesis of 2-adamantyl 7-[(2-{[(2E)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)prop-2-enoyl]amino}ethyl)amino]-7-oxoheptanoate and...  相似文献   

12.
A convenient approach for the preparation of(1S,3’R.4’S,5’S,6’R)-5-chloro-6-[(4-ethylphenyl)methyl]- 3’,4’,5’,6’-tetrahydro-6’-(hydroxymethyl)-spiro[isobenzofuran-1(3H),2’-[2H]pyran]-3’,4’,5’-triol is developed. The targeted compound was synthesized from 2-bromo-4-methylbenzoic acid in nine steps and the isomers of undesired ortho-products were avoided during the preparation.  相似文献   

13.
张炜  牟宗宏  杨立  刘中立 《有机化学》2001,21(2):155-159
三种带有不同取代基的重氮萘酮(la~1c)在THF和二氧六环中加热分解给出不同的产物。1-重氮-4-萘酮(1a)的热解产物主要是重氮萘酮热解后产生的烯酮卡宾(2a)与环醚开环后形成的聚合物;3-甲基-1-重氮-4-萘酮(1b)的热解产物比较复杂,除冠醚类产物之外,还有烯酮卡宾对四氢呋喃和二氧六环的C-H键的插入反应产物、螺环化合物、2-甲基萘酚以及难以分离的聚合物;3-硝基-1-重氮-4-萘酮(1c)的热解产物主要是聚合物,此外还有少量C-H键的插入反应产物和2-硝基萘酚。对重氮萘酮热解反应的机理作了讨论。  相似文献   

14.
Three-component condensation of methyl {4-[(2E)-3-(4-methoxyphenyl)prop-2-enoyl]phenyl}- carbamate with ninhydrin and L-proline in methanol–water (10: 1) afforded methyl {4-[1,3-dioxo-1′- (4-methoxyphenyl)-1,1′,2′,3,5′,6′,7′,7a′-octahydrospiro[indene-2,3′-pyrrolizin]-2′-ylcarbonyl]phenyl}carbamate. Heating of methyl {4-[(2E)-3-(4-methoxyphenyl)prop-2-enoyl]phenyl}carbamate with isatin and benzylamine in methanol gave methyl {4-[4′-(4-methoxyphenyl)-2-oxo-5′-phenyl-1,2-dihydrospiro[indole-3,2′-pyrrolidin]-3′-ylcarbonyl]phenyl}carbamate. The condensation of methyl {4-[(2E)-3-(4-methoxyphenyl)prop-2- enoyl]phenyl}carbamate with sarcosine and 11H-indeno[1,2-b]quinoxalin-11-one generated in situ from ninhydrin and o-phenylenediamine in boiling ethanol led to the formation of methyl {4-[4′-(4-methoxyphenyl)-1′-methyl-11,11a-dihydro-5aH-spiro[benzo[b]phenazine-6,2′-pyrrolidin]-3′-ylcarbonyl]phenyl}carbamate.  相似文献   

15.
The reactivity of various 2-oxyallyl cations toward 2,2'-methylenedifuran (1b), 2,2'-(hydroxymethyl)difuran (1c), 2,2'-(trimethylsilylmethylene)difuran (1d), and di(2-furyl)methanone (1e) has been explored. Difuryl derivatives 1c, 1d, and 1e refused to undergo formal double [4+3]-cycloadditions. Conditions have been found to convert 1b into meso-1,1'-methylenedi[(1R,1'S,5S,5'R)- (3) and (+/-)-1,1'-methylenedi[(1RS,1'SR,5SR,5'RS)-8-oxabicyclo[3.2.1]oct-6-en-3-one] (4) that do not require CF(3)CH(OH)CF(3) as solvent. High yields of meso-1,1'-methylenedi[(1R,1'S,2S,2'R,4R,4'S,5S,5'R)- (5) and (+/-)-1,1'-methylenedi[(1RS,1'RS,2SR,2'SR,4RS,4'RS,5SR,5'SR)-2,4-dimethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one] (6) have been obtained when 1b was reacted with 2,4-dibromopentan-3-one (7h) and NaI/Cu.  相似文献   

16.
Pugh C 《Organic letters》2000,2(9):1329-1331
[formula: see text] NaBH4 reduction of 2,5-bis[(4'-(n-alkoxy)benzoyl)oxy]benzaldehydes produces primarily the rearranged phenol, which does not generate liquid crystalline phases when laterally attached to a polymer backbone. Rearrangement is prevented by quenching the intermediate benzyl alkoxide with a weak acid. For example, 2,5-bis[(4'-(methoxy)benzoyl)oxy]benzaldehyde is selectively reduced to 2,5-bis[(4'-(methoxy)benzoyl)oxy]-benzyl alcohol with less than 5% intramolecular transesterification using 2-3 equiv of NaBH4 in the presence of 20-30 equiv of acetic acid (1:10 NaBH4/AcOH).  相似文献   

17.
Ferrocene phosphinocarboxamides, 1-(diphenylphosphino)-1'-{N-[(2-pyridyl)methyl]carbamoyl}ferrocene (1) and 1-(diphenylphosphino)-1'-{N-[2-(2-pyridyl)ethyl]carbamoyl}ferrocene (2) were prepared from 1-(diphenylphosphino)-1'-ferrocenecarboxylic acid and studied as ligands for palladium. Starting with [PdCl2(cod)], the reactions at a 2 : 1 ligand-to-metal ratio gave uniformly the bis-phosphine complexes [PdCl2(L-kappaP)2] (3, L = 1; 4, L = 2) whereas those performed at a 1 : 1 ratio yielded distinct products: [PdCl2(1-kappa(2)P,N)] (5) with 1 coordinating as a trans-spanning P,N-donor, and the symmetric, P,N-bridged dimer [(micro-2-N,P)2{PdCl2}2] (6), respectively. The crystal structures of 1, 2, 4.4CHCl3, 5.AcOH, and 6.8CHCl3 as determined by X-ray diffraction showed the compounds to form well defined solid-state assemblies through hydrogen bonds. Testing of the phosphinocarboxamides in the palladium-catalysed Suzuki cross-coupling reaction revealed 1 and 2, combined with Pd(OAc)2 to form efficient catalysts for the reactions of aryl bromides while aryl chlorides coupled only when activated with electron-withdrawing groups.  相似文献   

18.
Two new unusual natural pigments were first isolated from the whole herbs of Selaginella tamariscina. The structure of selaginellin A (1) was established as (R,S)-4-[(4'-hydroxy-3-((4-hydroxyphenyl)ethynyl)biphenyl-2-yl)(4-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one and selaginellin B (2) as (R,S)-4-[(4'-methoxy-4-(methyl)-3-((4-methoxyphenyl)ethynyl)biphenyl-2-yl)(4-methoxyphenyl)methylene]-2,5-cyclohexadien-1-one, along with four known biflavonoids, amentoflavone (3), hinokiflavone (4), heveaflavone (5), and 7'-O-methylamentoflavone (6). Their chemical structures were elucidated by spectral analysis of electrospray ionization mass spectroscopy (ESI-MS), one-dimensional nuclear magnetic resonance spectroscopy (1D-NMR) and two-dimensional-nuclear magnetic resonance spectroscopy (2D-NMR) including (1)H-NMR, (13)C-NMR, distortionless enhancement by polarization transfer (DEPT) and heteronuclear multiple bond coherence (HMBC), and single-crystal X-ray diffraction techniques.  相似文献   

19.
5,5'-(4-Nitrobenzylidene)bis(2-thiobarbituric) acid and 5-(4-nitrophenyl)-2,8-dithioxo-5,7,8,9-tetrahydro-2H-pyrano[2,3-d:6,5-d']dipyrimidine-4,6(1H,3H)-dione, similar to unsubstituted 2-thiobarbituric acid, readily react with haloacetic acids and their esters to form regioselectively the S-alkylation products. The alternative routes fo 5,5'-(4-nitrobenzylidene)bis[(4-hydroxy-6-oxo-1,6-dihydropyrimidine-5,2-diyl)sulfanyl]diacetic acids, based on condensation of 4,6-dihydroxypyrimidin-2-ylthioacetic acid with carbonyl compounds followed by cyclodehydration to [(5-(4-nitrophenyl)-4,6-dioxo-3,5,6,7-tetrahydro-4H-pyrano[2,3-d:6,5-d']dipyrimidine-2,8-diyl)di(sulfanyl)]diacetic acid derivatives, are less efficient. Alkylation of 2-thiobarbituric acid with ethyl bromoacetate in ethanol in the presence of alkali yields 5-(2-oxo-2,5-dihydro-1,3-thiazol-4-yl)-2-thiobarbituric acid.  相似文献   

20.
The asymmetric syntheses of heteroaromatic 3-[(tert-butyldimethylsilyl)oxy]-2-azetidinones 12-16 via chiral ester enolate-imine cyclocondensation chemistry are described. The azetidinones contain heteroaromatic moieties which, in certain cases, contribute to a decrease in enantioselectivity due to possible alternate coordinations in the transition states. The (3R,4S)-3-[(tert-butyldimethylsilyl)oxy]-4-heteroaryl-2-azetidinones were subsequently converted to the heteroaromatic taxanes 31-36 and 43-45. Conformational analyses of the 3'-(2-pyridyl) analogue 31 and 3'-(2-furyl) analogue 43 indicate they have solution conformational preferences virtually identical to paclitaxel and docetaxel. Heteroaromatic N-acyl paclitaxel analogues 47-51 were prepared from N-debenzoylpaclitaxel via Schotten-Baumann acylation. The majority of the 14 analogues displayed good to excellent activity in a microtubule assembly assay in comparison to paclitaxel. The analogues were also tested for cytotoxicity against B16 melanoma cells. 3'-Dephenyl-3'-(2-pyridyl)paclitaxel (31), 3'-dephenyl-3'-(2-furyl)paclitaxel (34), N-BOC-3'-dephenyl-3'-(2-furyl)paclitaxel (43), 3'-dephenyl-3'-(2-furyl)-N-(hexanoyl)paclitaxel (44), and N-debenzoyl-N-(3-furoyl)paclitaxel (51) were found to be more cytotoxic than paclitaxel against this cell line. 3'-Dephenyl-3'-(4-pyridyl)paclitaxel (33) and N-debenzoyl-N-(2-furoyl)paclitaxel (50) displayed cytotoxicity against B16 melanoma cells similar to paclitaxel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号