首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the radioactive content of drinking mineral bottled water in Poland was carried out. 210Po,238U and 234U activity concentrations were determined by alpha-spectrometry with low-level-activity silicon detectors. The results revealed that the mean concentration of 210Po,238U and 234U in analyzed water sample were 1.28, 0.80 and 0.80 mBq.dm-3, respectively. The effective doses due to the polonium and uranium emissions were calculated for bottled drinking water.  相似文献   

2.
For the first time, a radiological study for the dissolved 238U, 234U, 210Pb and 210Po was held in major Greek rivers across the country. 234U/238U activity ratios are above one in all samples and 210Po/210Pb activity ratios are respectively below the unit indicating the disequilibrium in the samples. Quite satisfactory correlations were observed among 234U and 238U as well as among 210Po and 210Pb values. Uranium isotopes were separated by ion exchange and electroplated on stainless steel plates. 210Po was spontaneously deposited on nickel plates, while 210Pb was indirectly determined through the ingrowth of 210Po. The sources were measured by a-spectrometry.  相似文献   

3.

Transfer Factors (Fv) of 238U, 226Ra, 234Th, 210Po and 210Pb from five different agricultural soils in semi-arid region (Syria) to four different barley genotypes were studied in an agricultural potted experiment. The geometric mean of the Fv values were (0.08) for 210Pb, and (0.02) for 210Po, while it ranged from 0.18 to 0.42 ,from 0.08 to 0.15 and from 0.22 to 0.4 for 238U, 234Th and 226Ra, respectevily. The Fv values of 238U and 226Ra were within the recommended global medians, while the Fv values of 234Th, 210Pb and 210Po were higher. There is no clear relationship between the soil properties and Fv of all studied radionuclides to barley genotypes. Moreover, the expression of glutathione (GSH) gene, which is belived to be involoved in heavy metal removal was generally low in all studied varieties grown in all soil types.

  相似文献   

4.
Consumption of natural water (public and bottled) is very important for people from a radiological point of view. Uranium and polonium alpha-emitters belong to the most radiotoxic elements for human. In the paper, a study of the radioactive content of drinking (public) water in Gdask agglomeration (Poland) was carried out. 238U, 234U and 210Po activity concentrations were determined by alpha-spectrometry with low-level-activity silicon detectors. The results revealed that the mean concentration of 238U, 234U and 210Po in analyzed water sample were 2.76, 2.86 and 0.48 mBq·dm–3, respectively. Finally, effective does due to uranium and polonium emissions were calculated for drinking water samples for the inhabitants of the agglomeration.  相似文献   

5.
Within this work, the activity concentrations of uranium isotopes (234U, 235U, and 238U) were analyzed in some of the popular and regularly consumed Hungarian mineral-, spring-, therapeutic waters and tap waters. Samples were selected randomly and were taken from different regions of Hungary (Balaton Upland, Bükk Mountain, Somogy Hills, Mez?föld, and Lake Hévíz). Concentration (mBq L?1) of 234U, 235U, and 238U in the waters varied from 1.1 to 685.2, from <0.3 to 7.9, and from 0.8 to 231.6 respectively. In general, the highest uranium concentrations were measured in spring waters, while the lowest were found in tap waters. In most cases radioactive disequilibrium was observed between uranium isotopes (234U and 238U). The activity ratio between 234U and 238U varies from 0.57 to 4.97. The calculated doses for the analyzed samples of spring water are in the range 0.07–32.39 μSv year?1 with an average 4.32 μSv year?1. This is well below the 100 μSv year?1 reference level of the committed effective dose recommended by WHO and the EU Council. The other naturally occurring alpha emitting radionuclides (226Ra and 210Po) will be analyzed later to complete the dose assessment. This study provides preliminary information for consumers and authorities about their internal radiological exposure risk due to annual intake of uranium isotopes via water consumption.  相似文献   

6.
Hungary is rich in spring waters. A survey studying the naturally occurring alpha emitter radionuclides in 30 frequently visited and regularly consumed spring waters was conducted out in the Balaton Upland region of Hungary.226Ra, 224Ra, 234U, 238U and 210Po activity concentrations were determined by using alpha spectrometry after separation from matrix elements. Average concentration (mBq L− 1) of 226Ra, 224Ra, 234U, 238U and 210Po in the spring waters is varied from 2.1 to 601, from < 1.1 to 65.4, from 3.9 to 741.9, from < 0.44 to 274.3 and from 2 to 15.2 respectively. In most cases radioactive disequilibrium was observed between uranium and radium isotopes. The doses for the analyzed samples of spring water are in the range 3.59–166.73 μSv y− 1 with an average 18.2 μSv y− 1 .This is well below the 100 μSv y− 1 reference level of the committed effective dose recommended by WHO. Only one water sample had a dose higher than 100 μSv y− 1, mainly due to the contribution from radium (226Ra, 224Ra) and 210Po isotopes. This study provides important information for consumers and authorities about their internal radiological exposure risk from spring water intake.  相似文献   

7.
All commercially available mineral waters of Austrian origin were investigated with regard to the natural radionuclides 228Ra, 226Ra, 210Pb, 210Po, 238U and 234U. From 1 to 1.5 L of sample the nuclides were extracted and measured sequentially: the radium isotopes as well as 210Pb were measured by liquid scintillation counting after separation on a membrane loaded with element-selective particles (Empore Radium Disks), 210Po was determined by α-particle spectroscopy after spontaneous deposition onto a copper planchette and uranium was determined also by α-particle spectroscopy after anion separation and microprecipitation with NdF3. The calculated committed effective doses for adults, teens and babies were compared to the total indicative dose of 0.1 mSv/year given in the EC Drinking Water Directive. The dominant portion of the committed effective dose was due to 228Ra. Highly mineralised waters showed also higher 226Ra and 228Ra levels.  相似文献   

8.
Phosphogypsum is a high volume by-product from the phosphoric acidindustries containing naturally occurring radionuclides. Envisaging the usesof phosphogypsum, a characterization of this material in terms of spatialdistribution of radionuclides was carried out by core samples taken from stacksof two important Brazilian phosphoric acid facilities. Samples were analyzedfor 238U, 234U, 232Th, 226Ra, 228Ra, 210Pb and 210Po using alpha- and gamma-spectrometryand UV-VIS spectrophotometry. Specific activities of 238U, 234U, 226 Ra and 210Po obtained were comparablewith data reported in the phosphogypsum literature, while higher values werefound for 232 Th and 228Ra.  相似文献   

9.
The concentrations of uranium and the234U/238U ratio in natural Syrian phosphates were measured by gamma- and alpha-ray spectroscopy. The234U/238U activity ratios showed that uranium in Syrian phosphate is in equilibrium under the climatic conditions. Soma anomalous observations in these ratios were explained by earlier leaching of the phosphate by water (rain or other).  相似文献   

10.
Activity concentrations of 238U, 235U and 234U were determined in different sources of drinking water at the Obuasi gold mines and its surrounding areas in Ghana. Water samples collected from the mines and its surrounding areas were analyzed using direct gamma-ray spectrometry and neutron activation analysis. The 234U/238U and 235U/238U ratios were calculated and the mean values range from 1.27 to 1.38 and from 0.044 to 0.045 respectively. The average 234U/238U ratio was from 1.27 for groundwater to 1.38 for treated water, demonstrating the lack of equilibrium. The average 235U/238U activity ratio is 0.045, indicating that only natural uranium was detected in the samples investigated.  相似文献   

11.
Activity concentrations of 234U, 238U and 226Ra in mineral waters were determined on the basis of nine water bottling facilities using alpha particle spectrometry. The mineral water samples were collected from three geographic regions of Turkey. The radiochemical separation used in the uranium analysis is based on the isolation of uranium radioisotopes from other radionuclides such as Th, Am, Pu and Np using UTEVA resin. Alpha sources were prepared using electrodeposition method. The activity concentration of 226Ra was determined after deposition on a membrane using BaSO4 co-precipitation method. The activity concentrations (mBq L?1) of 226Ra, 238U and 234U ranged from <0.56 to 165, from <0.42 to 439 and from <0.42 to 464, respectively. The measured activity concentrations were used for the calculation of the average total annual effective ingestion doses for children and adults. The committed effective doses were calculated for three different scenarios according to mineral water consumption rate. In the most extreme scenario (for age group 12–17), all water samples except MW1 and MW2 cause annual committed effective doses below the reference level (0.1 mSv year?1) recommended by World Health Organization (WHO).  相似文献   

12.
The aim of this work was to calculate the values of the 234U/238U activity ratio in natural environment (water, sediments, Baltic organisms and marine birds from various regions of the southern Baltic Sea; river waters (the Vistula and the Oder River); plants and soils collected near phosphogypsum waste heap in Wi?linka (Northern Poland) and deer-like animals from Northern Poland. On the basis of the studies it was found that the most important processes of uranium geochemical migration in the southern Baltic Sea ecosystem are the sedimentation of suspended material and the vertical diffusion from the sediments into the bottom water. Considerable values of the 234U/238U are characterized for the Vistula and Oder Rivers and its tributaries. The values of the 234U/238U activity ratio in different tissues and organs of the Baltic organisms, sea birds and wild deer are varied. Such a large variation value of obtained activity ratios indicates different behavior of uranium isotopes in the tissues and organisms of sea birds and wild animals. This value shows that uranium isotopes can be disposed at a slower or faster rate. The values of the 234U/238U activity ratio in the analyzed plants, soils and mosses collected in the vicinity of phosphogypsum dumps in Wi?linka are close to one and indicate the phosphogypsum origin of the analyzed nuclides. Uranium isotopes 234U and 238U are not present in radioactive equilibrium in the aquatic environment, which indicates that their activities are not equal. The inverse relationship is observed in the terrestrial environment, where the value of the of the 234U/238U activity ratio really oscillates around unity.  相似文献   

13.
The uranium concentration and the234U/238U,235U/238U activity ratios were studied in water samples from Jucar River, using low-level -spectrometry. The effects of pH, temperature and salinity were considered and more detailed sampling was done in the neighbourhood of Cofrentes Nuclear Plant (Valencia, Spain). Changes were observed in the uranium concentration with the salinity and the234U/238U activity ratio was found to vary with pH. Leaching and dilution, which depend on pH and salinity, are the probable mechanisms for these changes in the concentration of uranium and the activity ratios.  相似文献   

14.
PM-10, PM-2.5 and PM-1.0 concentrations were measured over an 8 h period at sites both inside and outside the museum of Wawel Royal Castle in Cracow, Poland. Gross alpha (α) and beta (β) activities seemed to vary across the particle size range with generally higher levels of activities in the PM-2.5 particle fraction, and higher activities in the PM-10 fraction, while both the highest and the lowest beta activities were found in PM-1.0 fraction. However, statistically there was no significant difference. The highly radioactive PM-1.0 fraction comprised mainly 210Pb and the 210Pb progeny, 210Bi and 210Po, and can be attributed to anthropogenic sourced outdoor radioactive particles brought indoors by visitors. 210Pb is considered to be a good tracer of secondary aerosols produced by gas-to-particle conversion. Inside the Museum, the highest level of gross alpha activity was detected in the PM-10 fraction, and was mainly due to the uranium isotopes (234U, 235U and 238U) and their daughter products (226Ra, 232Th, 210Po or 224Ra), and 137Cs. The minimum and maximum total indicative doses per 8 h are caused by 137Cs and 232Th, respectively.  相似文献   

15.
This study was carried out for the determination of 238U and 232Th concentrations in soil and various foods obtained in high natural radiation areas in China for estimating the internal radiation doses caused by these radionuclides. Knowledge of the daily dietary intakes of the nuclides through foods is essential to evaluate the internal radiation dose. Several analytical methods were evaluated for their applicability and quality assurance. The accuracy and precision of ICP-MS is considerably better for determining trace elements like U and Th in fine powder samples. The estimated annual effective dose is 0.302 μ Sv/y for 238U and 1.86 μ Sv/y for 232Th in the high natural radiation area, and 0.0101 μ Sv/y for 238U and 0.177 μ Sv/y for 232Th in the control area. Received: 25 September 1998 / Revised: 3 December 1998 / Accepted: 8 December 1998  相似文献   

16.
Uranium concentration and the 234U/238U activity ratio have been measured for the Tatsunokuchi hot spring waters of Ishikawa Prefecture in Japan, collected periodically over a long period (1977-2000). The concentration of 238U varied drastically between 0.045 and 1.02 mBq/l (a factor of about 20), while the 234U concentration was almost unchanged, ranging from 2.30 to 3.07 mBq/l. Resultant 234U/238U activity ratios showed a wide range from 2.7 to 51. Equilibrium calculation by using the geochemical code showed that U for one end-member representing low uranium contents and very high 234U/238U ratios was expected to exist as UO2(CO3)2 2-. By using the U isotopic and 14C dating methods, the age of this water was roughly estimated to be in the range of 104-105 years.  相似文献   

17.
234U of high isotopic purity (>99 atom%) as well as of high radiochemical, purity was separated from aged238Pu prepared by neutron irradiation of237Np. Methodologies based on ion exchange and solvent extraction procedures were used to achieve high decontamination factor from238Pu owing to the very high α-specific activity of238Pu (2800 times) in comparison to that of234U. Isotopic composition of purified234U was determined by thermal ionisation mass spectrometry. Alpha spectrometry was used for checking the radiochemical purity of234U with respect to concomitant α-emitting nuclides. The separated234U will be useful for different investigations using mass spectrometry and alpha spectrometry.  相似文献   

18.
An intercomparison of the methodology (alpha, beta and gamma spectrometry) used for 238U, 235U and 210Pb determination was carried out based on 38 sediment samples. The activity range of the samples varied from 10–700 Bq/kg for 210Pb, 1–35 Bq/kg for 235U and 10–800 Bq/kg for 238U. Results obtained using the three methods were not statistically different at high activity levels, but agreement between the results decreased at lower sample activity levels. For 210Pb, the smallest difference was found between alpha and gamma spectrometry. A good correlation between results from alpha and gamma spectrometry was observed over the whole activity range. In beta spectrometry, the results were slightly higher than those obtained by alpha or gamma spectrometry due to the impurity of 228Ra. In 238U analysis, good correspondence was observed between 238U determined by gamma and alpha spectrometry, particularly at higher 238U activity concentrations over 100 Bq/kg. In 235U analysis, attention needs to be paid to interference from 226Ra and its reduction.  相似文献   

19.
Screening measurements for 3H, 226Ra, 222Rn and 238U in ground water were performed within a ground- and drinking water project in Austria. The aim of this project is to get an overview of the distribution of natural radionuclide activity concentration levels in ground water bodies. In some cases this water is used for drinking water abstraction. In this paper methods and results of the screening measurements are presented. Regions with high activity concentrations were identified and in these regions further investigation for 228Ra, 210Pb and 210Po will be conducted.  相似文献   

20.
The paper presents systematic studies on the vertical profiles of 210Po, an important decay product of 238U, in soils along coastal Kerala. Soil samples collected from different depth intervals 0–10, 10–20, 20–30 cm were analyzed for 210Po activity concentration by radiochemical methods. The activity 210Po in soil samples were counted using a ZnS(Ag) alpha scintillation counting system. The mean values of activity concentrations of 210Po in soil of various depths were found to be 8.66, 5.63 and 4.95 Bq kg−1 for depth intervals of 0–10, 10–20 and 20–30 cm, respectively. The overall activity concentration of 210Po in soil was found to vary from 2.26 ± 0.19 to 14.02 ± 0.12 Bq kg−1 with a mean value of 6.43 Bq kg−1. Maximum activity concentration was found in soil samples of Kollam region with the mean value of 10.08 ± 0.92 Bq kg−1. The activity of 210Po was found to be comparatively high in surface soil. The variation of 210Po activity concentration with organic matter contents was studied. 210Polonium activity concentration was found to increase with increasing organic matter content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号