首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The ‘Gauge Including Atomic Orbitals’ (GIAO) approach is used to investigate the question of intramolecular rotation. Ab initio GIAO calculations of NMR chemical shielding tensors carried out with GAUSSIAN 94 within the SCF-Hartree-Fock approximation are described. In order to compare the calculated chemical shifts with experimental ones, it is important to use consistent nuclear shieldings for NMR reference compounds like TMS. The influence of rotating functional groups X=CH3, CHO, NO2, NH2, CONH2, COOH or C6H5 on the shielding tensors in seven vinylic derivatives H2C=CH-X is studied; the molecules are propene, acrolein, nitroethylene, ethyleneamine, acrylamide, acrylic acid and styrene. We observe a marked dependence of nuclear shielding and chemical shift on the torsional movement. Different Boltzmann averages over the conformational states are considered and compared for gas phase, liquid and solid state NMR. Their applicability to model cases for rigid or freely rotating molecules and for fixed molecules (e.g. polymers or proteins) with rapidly rotating groups is discussed and simple calculation models are presented. On the basis of this work it can be concluded that intramolecular rotation clearly affects the observed averages. Effects of up to 2 ppm have been observed for isotropic chemical shifts, and up to 17 ppm difference have been observed for individual tensor components, for example, of the carboxylic 13C atom in acrylic acid. The variation of the shielding tensor on a nucleus in a fixed molecular backbone resulting from an attached rotating group furthermore leads to a new relaxation mechanism by chemical shift anisotropy.  相似文献   

2.
The supramolecular 1:1 host-guest inclusion compound, p-tert-butylcalix[4]arene x alpha,alpha,alpha-trifluorotoluene, 1, is characterized by 19F and 13C solid-state NMR spectroscopy. Whereas the 13C NMR spectra are easily interpreted in the context of earlier work on similar host-guest compounds, the 15F NMR spectra of solid 1 are, initially, more difficult to understand. The 19F[1H] NMR spectrum obtained under cross-polarization and magic-angle spinning conditions shows a single isotropic resonance with a significant spinning sideband manifold. The static 19F[1H] CP NMR spectrum consists of a powder pattern dominated by the contributions of the anisotropic chemical shift and the homonuclear dipolar interactions. The 19F MREV-8 experiment, which minimizes the 19F-19F dipolar contribution, helps to identify the chemical shift contribution as an axial lineshape. The full static 19F[1H] CP NMR spectrum is analysed using subspectral analysis and subsequently simulated as a function of the 19F-19F internuclear distance (D(FF) = 2.25 +/- 0.01 A) of the rapidly rotating CF3 group without including contributions from additional libration motions and the anisotropy in the scalar tensor. The shielding span is found to be 56 ppm. The width of the centerband in the 19F[1H] sample-spinning CP NMR spectrum is very sensitive to the angle between the rotor and the magnetic field. Compound 1 is thus an attractive standard for setting the magic angle for NMR probes containing a fluorine channel with a proton-decoupling facility.  相似文献   

3.
The results of systematic ab initio calculations of (15)N and (1)H chemical shielding tensors in the GC base pair as a function of hydrogen bond length are presented for the first time. The hydrogen bond length characterized by the distance r(N...N) between purine N1 and pyrimidine N3 was varied between 2.57 and 3.50 A and the chemical shift tensors were calculated by the sum-over-states density functional perturbation theory. It is shown that the hydrogen bond length has a strong effect on the chemical shielding tensor of both imino proton and nitrogen, on their orientation, and, as a consequence, on the relaxation properties of both nuclei. For a nitrogen nucleus not involved in hydrogen bonding, the shielding tensor is nearly axially symmetric and almost collinear with the bond vector. As the length of the hydrogen bond decreases, the least shielding component sigma(11) deflects from the N-H vector and the shielding tensor becomes increasingly asymmetric. The significance of the presented results for the analysis of relaxation data and the efficiency of TROSY effects together with a summary of the relevant shielding parameters are presented and discussed.  相似文献   

4.
The spin-spin coupling can provide useful information for analysing the structure of a system and the extent of non-covalent bonds interactions. In this study, we present the isotropic NMR properties and spin-spin coupling involving ruthenium-ligand (Ru-L) bonds and other spin-spin interactions obtained from DFT calculations. The proton shift which in close proximity with the Ru and Cl (or O) atoms are characterised with lower and higher chemical shift respectively. Though Ru-Cl bond has longer bond length than all other Ru-L bonds, yet its spin-spin coupling is higher than others because of a very high contribution of PSO which is far higher than the contribution from FC terms. In all other Ru-L bonds, FC is the most significant Ramsey terms that define their spin-spin coupling. Both the isotropic and anisotropic shielding of the Hz of the pyrazole is lower than Hc of the cymene and the spin-spin coupling 3J(Hz…Hz) of the pyrazole are less than half of the 3J(Hc…Hc) of the cymene unit in the complexes. There is a little increase in both the 3J(Hc…Hc) and 3J(Hz…Hz) spin-spin coupling in the hydrolysed complexes compare to the non-hydrolysed complexes. The isotropic and anisotropic shielding tensor of Ru atoms increases in magnitude as the complexes get hydrolysed that could be ascribed to a more deshielding chemical environments.  相似文献   

5.
An attempt has been made to correlate the experimentally observed 29Si MAS NMR chemical shifts of monoclinic phase of highly siliceous ZSM-5 with their electronic properties. In order to incorporate the influence of next neighbor atoms on the 29Si chemical shielding of central SiO4, a pentameric cluster model (H12Si5O16) has been chosen. Each of the 24 crystallographically distinct Si sites, of ZSM-5 framework has been modelled by such cluster models. Based on semi-empirical quantum chemical calculations, a multiple linear regression analysis of the various electronic properties with the 29Si chemical shifts has been attempted. The relative difference in 29Si chemical shifts for the Si sites in ZSM-5 is reasonably accounted, although quantitative prediction may require non-empirical quantum chemical calculations.  相似文献   

6.
Anthocyanidins, red dyes from flower petals and fruits, are beneficial to human health. They attract considerable attention owing to their strong antioxidant and radical scavenging properties, however they are unstable in solution and available in small amounts only. (13)C CP MAS NMR spectra were recorded to characterize solid-state conformation of nine anthocyanidins: apigenidin, pelargonidin, cyanidin, delphinidin, peonidin, malvidin robinetidin, luteolinidin and diosmetinidin chlorides. For some carbons, the solid-state chemical shifts were different from those obtained for solutions, indicating differences in conformation and intermolecular interactions. The principal elements of the (13)C chemical shift tensor were measured for pelargonidin, cyanidin, delphinidin and malvidin chlorides using PASS-2D NMR technique. DFT GIAO calculations of shielding constants were performed for apigenidin and several geometric isomers of pelargonidin. Comparison of experimental (13)C delta(ii) with the theoretical shielding parameters was helpful in predicting the most reliable geometry in the solid state. The cross-polarization parameters were obtained from variable-contact time experiments; T(CH) are longer and the values of T(1)(rho)(H) are shorter in the order: pelargonidin相似文献   

7.
Application of the "quadrupolar Carr-Purcell Meiboom-Gill" (QCPMG) sequence permits the first natural abundance solid-state 25Mg NMR study of an organometallic magnesium compound, bis(cyclopentadienyl)magnesium. Analytical and numerical simulations of both static and magic-angle spinning QCPMG NMR spectra beget an axially symmetric 25Mg electric field gradient (EFG) tensor (quadrupolar asymmetry parameter, eta(Q)=0.01(1)) with a nuclear quadrupole coupling constant of C(Q)=5.80(5)MHz. Restricted Hartree-Fock and hybrid density functional theory (B3LYP) calculations are in good agreement with experimental EFG values and predict a chemical shielding anisotropy of about 40-50 ppm, which we attempt to elucidate by numerical simulations. The parameters and orientation of the 25Mg EFG tensor are rationalized from examination of the crystal structure and molecular symmetry. The NMR properties of the cyclopentadienyl rings are examined by 13C[1H] CPMAS NMR, RHF and hybrid-DFT (B3LYP) calculations, and simulations of the effects of chemical exchange on the 13C powder pattern.  相似文献   

8.
The experimental 13C NMR chemical shift components of uracil in the solid state are reported for the first time (to our knowledge), as well as newer data for the 15N nuclei. These experimental values are supported by extensive calculated data of the 13C, 15N and 17O chemical shielding and 17O and 14N electric field gradient (EFG) tensors. In the crystal, uracil forms a number of strong and weak hydrogen bonds, and the effect of these on the 13C and 15N chemical shift tensors is studied. This powerful combination of the structural methods and theoretical calculations gives a very detailed view of the strong and weak hydrogen bond formation by this molecule. Good calculated results for the optimized cluster in most cases (except for the EFG values of the 14N3 and 17O4 nuclei) certify the accuracy of our optimized coordinates for the hydrogen nuclei. Our reported RMSD values for the calculated chemical shielding and EFG tensors are smaller than those reported previously. In the optimized cluster the 6-311+G** basis set is the optimal one in the chemical shielding and EFG calculations, except for the EFG calculations of the oxygen nuclei, in which the 6-31+G** basis set is the optimal one. The optimal method for the chemical shielding and EFG calculations of the oxygen and nitrogen nuclei is the PW91PW91 method, while for the chemical shielding calculations of the 13C nuclei the B3LYP method gives the best results.  相似文献   

9.
Results from a solid-state 139La NMR spectroscopic investigation of the anhydrous lanthanum(III) halides (LaX3; X=F, Cl, Br, I) at applied magnetic fields of 7.0, 9.4, 11.7, 14.1, and 17.6 T are presented and highlight the advantages of working at high applied magnetic field strengths. The 139La quadrupolar coupling constants are found to range from 15.55 to 24.0 MHz for LaCl3 and LaI3, respectively. The lanthanum isotropic chemical shifts exhibit an inverse halogen dependence with values ranging from −135 ppm for LaF3 to 700 ppm for LaI3, which represents nearly half of the total lanthanum chemical shift range. The spans of the magnetic shielding tensors also vary widely, from 35 to 650 ppm for the solid LaF3 through LaI3. DFT calculations of the 139La electric field gradient and magnetic shielding tensors have been performed and provide a qualitative interpretation of the trends observed experimentally.  相似文献   

10.
5-Fluoro-dl-tryptophan (5F-Trp) is a very sensitive probe used to investigate orientation and dynamics of biomacromolecules at the in situ level. In order to establish a (19)F NMR strategy, the crystal structure and (19)F chemical shielding tensor of 5F-Trp are reported. A novel approach was developed to use F-F homonuclear dipole-dipole coupling information to analyze single-crystal NMR data without determining crystal orientations. The measured values for the principal components of the shielding tensor are sigma(11)=0.9, sigma(22)=-63.3, and sigma(33)=-82.9 ppm relative to TFA in D(2)O. The principal axes of the shielding tensors coincide with the indole ring symmetry, which makes it a straightforward and powerful tool to monitor protein alignment in oriented environments. Hartree-Fock (HF) and density functional theory (DFT) calculations of the chemical shielding tensors are also reported.  相似文献   

11.
Solid 63Cu NMR and Molecular Dynamics (MD) methods have been used to investigate the dynamical structure of Ag0.99Cu0.01I crystal, through the viewpoint of the chemical shift and the spin-lattice relaxation. In the superionic phase (α-phase), we obtained the temperature variation of the chemical shift as −0.2 ppm/K, and the activation energy of the Cu+ ion diffusion as 11 kJ/mol. The temperature dependence of the chemical shift was explained by the calculated chemical shielding surface based on ab initio MO calculation, and by the probability density of Cu+ ion estimated by MD simulation. The spin-lattice relaxation was also analyzed by using the MD method in which we assumed two jumping models as the diffusion process of the mobile cations. It is concluded that the temperature dependence of the chemical shift is dominated by the shielding in the vicinity of the 24(h) site, and the observed activation energy is due to the diffusion process of the mobile cations jumping from the 6(b) intrasub-lattice to the nearest-neighbor 6(b) sub-lattice.  相似文献   

12.
We present a detailed study on the correlation of the nuclear magnetic resonance (NMR) parameters with the results of density functional theory (DFT) calculations performed for paramagnetic high-spin cobalt(II) complexes with trispyrazolylborate ligands. This work is a first attempt to calculate dipolar and contact shifts in high-spin cobalt(II) pyrazolylborate systems. The calculation results show frontier orbitals that may be responsible for the contact shift. The contact shift values are compared with the dipolar shift ones. The latter shift values were both obtained from experimental data and calculated using DFT methods. We attempt to explain the dipolar effect, which may have a great share in NMR chemical shift of paramagnetic compounds.  相似文献   

13.
The first investigation and analysis of (59)Co 2D NMR homonuclear chemical shift correlation spectra are reported for the tetrahedral mixed-metal cluster HFeCo(3)(CO)(11)PPh(2)H. For this cluster in solution, the (59)Co 2D COSY and DQF COSY NMR spectra prove the existence of a scalar coupling between (59)Co nuclei. In order to obtain a value of this coupling, the 2D COSY and DQF COSY NMR spectra for a three-spin 7/2 AX(2) system have been simulated by numerical density matrix calculations. The comparison between experimental and theoretical 2D NMR spectra gives a spin-coupling constant |(1)J((59)Co - (59)Co)| = (115 +/- 20) Hz for this cluster. Experimental measurements of T(1) and of the line widths for cobalt 59 as well as theoretical (59)Co 1D NMR spectra are reported and support our findings.  相似文献   

14.
The alkynyl carbon chemical shift (CS) tensors for 2-butyne-1,4-diol are reported, based on analyses of the carbon-13 NMR spectra of stationary-powder and slow magic-angle spinning (MAS) samples for which the alkynyl carbon nuclei are enriched in 13C. NMR spectra of slow MAS samples exhibit spinning-frequency-dependent fine structure typical of crystallographically equivalent but magnetically distinct nuclei. Simulated spectra of slow MAS samples of this two-spin system are particularly sensitive to the relative orientations of the CS tensors. In addition, the value of 1J(13C, 13C), +175 +/- 10 Hz, is determined by examination of the total NMR lineshape of slow MAS samples. The CS tensors are almost axially symmetric, delta11 = 158.9 +/- 1.0 ppm and delta22 = 155.7 +/- 1.0 ppm; the direction of greatest shielding is approximately along the alkynyl C-C bond, delta33 = -57.8 +/- 2.0 ppm. Both the magnitudes of the principal components of the CS tensors and their orientations are in agreement with those predicted from first-principles calculations at the HF and MP2 levels of theory. This study demonstrates the importance of examining the NMR spectra of homonuclear two-spin systems with and without MAS under a variety of conditions (e.g., two or more applied magnetic fields and slow MAS).  相似文献   

15.
In a recent publication we presented a method to obtain highly resolved NMR spectra in the presence of an inhomogeneous B(0) field with the help of a matched RF gradient. If RF gradient pulses are combined with "ideal" 90 degrees pulses to form inhomogeneous z rotation pulses, the line broadening caused by the B(0) gradient can be refocused, while the full chemical shift information is maintained. This approach is of potential use for NMR spectroscopy in an inhomogeneous magnetic field produced by an "ex-situ" surface spectrometer. In this contribution, we extend this method toward two-dimensional spectroscopy with high resolution in one or both dimensions. Line narrowing in the indirect dimension can be achieved by two types of nutation echoes, thus leading to depth-sensitive NMR spectra with full chemical shift information. If the nutation echo in the indirect dimension is combined with a stroboscopic acquisition using inhomogeneous z-rotation pulses, highly resolved two-dimensional correlation spectra can be obtained in matched field gradients. Finally, we demonstrate that an INEPT coherence transfer from proton to carbon spins is possible in inhomogeneous B(0) fields. Thus, it is possible to obtain one-dimensional (13)C NMR spectra with increased sensitivity and two-dimensional HETCOR spectra in the presence of B(0) gradients of 0.4 mT/cm. These schemes may be of some value for ex-situ NMR analysis of materials and biological systems.  相似文献   

16.
In the 11B NMR spectra of dihalo derivatives of bis(dicarbollyl)cobalt(III), we have identified a correlation between the 11B NMR chemical shifts of substituted boron atoms and boron atoms found in other positions on the carborane skeleton. We have observed an increased shielding effect for fluorine atoms (compared with other halogens), manifested in an upfield shift of the 11B NMR signals for antipodal and trans boron atoms. For the fluorine-containing compound Bu4N+ [8,8′-F2-3,3′-Co(1,2-C2B9H10)2], we propose the following sequence of electron density transfer: B(8) → {B(6) and B(10)} → B(4, 7). __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 4, pp. 547–549 (cont.), July–August, 2006.  相似文献   

17.
Three cis-dioxovanadium(V) complexes with similar N-salicylidenehydrazide ligands modeling hydrogen bonding interactions of vanadate relevant for vanadium haloperoxidases are studied by (51)V solid-state NMR spectroscopy. Their parameters describing the quadrupolar and chemical shift anisotropy interactions (quadrupolar coupling constant C(Q), asymmetry of the quadrupolar tensor eta(Q), isotropic chemical shift delta(iso), chemical shift anisotropy delta(sigma), asymmetry of the chemical shift tensor eta(sigma) and the Euler angles alpha, beta and gamma) are determined both experimentally and theoretically using DFT methods. A comparative study of different methods to determine the NMR parameters by numerical simulation of the spectra is presented. Detailed theoretical investigations on the DFT level using various basis sets and structural models show that by useful choice of the methodology, the calculated parameters agree to the experimental ones in a very good manner.  相似文献   

18.
We report (11)B and (195)Pt NMR measurements in noncentrosymmetric superconductor Li(2)Pt(3)B. We find that the spin susceptibility measured by the Knight shift remains unchanged across the superconducting transition temperature T(c). With decreasing temperature (T) below T(c), the spin-lattice relaxation rate 1/T(1) decreases with no coherence peak and is in proportion to T3. These results indicate that the Cooper pair is in the spin-triplet state and that there exist line nodes in the superconducting gap function. They are in sharp contrast to those in the isostructural Li(2)Pd(3)B which is a spin-singlet, s-wave superconductor, and are ascribed to the enhanced spin-orbit coupling due to the lack of spatial inversion symmetry. Our finding points to a new paradigm where exotic superconductivity arises in the absence of electron-electron correlations.  相似文献   

19.
The ground state structural, electronic, and magnetic properties of multiferroic TbMn(2)O(5) are investigated via first-principles calculations. We show that the ferroelectricity in TbMn(2)O(5) is driven by the noncentrosymmetric magnetic ordering, without invoking the spin-orbit coupling and noncollinear spins. The intrinsic electric polarization in this compound is calculated to be 1187 nC cm(-2), an order of magnitude larger than previously thought.  相似文献   

20.
Two-dimensional 27Al multiple-quantum magic angle spinning (MQMAS) NMR experiments are used to study mixtures of bayerite (alpha-Al(OH)3) with either silicic acid (SiO2.nH2O) or silica gel (SiO2) that have been ground together for varying lengths of time. This mechanical treatment produces changes in the 27Al MAS and MQMAS NMR spectra that correspond to the formation of new Al species. Mean values of the quadrupolar interaction (PQ) and isotropic chemical shift (deltacs) are extracted from the two-dimensional 27Al NMR spectra for each of these species. The presence of significant distributions of both 27Al quadrupolar and chemical shift parameters is demonstrated and the effect of grinding duration on the magnitudes of these distributions is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号