首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This paper describes the nanoscratch behavior of Zn1−xCdxSe epilayers grown using molecular beam epitaxy (MBE). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Hysitron Triboscope nanoindenter techniques were employed to determine the microstructures, morphologies, friction coefficients (μ), and hardnesses (H) of these materials, and thereby propose an explanation for their properties in terms of nanotribological behavior. Nanoscratch analysis revealed that the coefficient of friction of the Zn1−xCdxSe epilayer system decreased from 0.172 to 0.139 upon increasing the Cd content (x) from 0.07 to 0.34. Furthermore, studies of the scratch wear depth under a ramping load indicated that a higher Cd content provided the Zn1−xCdxSe epilayers with a higher shear resistance, which enhanced the strength of the CdSe bonds. These findings suggest that the greater stiffness of the CdSe bond, relative to that of the ZnSe bond, enhances the hardness of the epilayers. Indeed, the effect of the Cd content on the growth of the Zn1−xCdxSe epilayers is manifested in the resulting nanotribological behavior.  相似文献   

2.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

3.
Mn-doped ZnO samples having composition Zn1−xMnxO (x=0.02, 0.04 and 0.05) were synthesized by solid state reaction technique with varying concentration of Mn from 0.02 to 0.05. Evidence of room temperature ferromagnetism was observed only in the composition Zn0.98Mn0.02O sintered at 500 °C. Our XRD pattern confirms the presence of Mn3O4 impurity phase in all the Zn1−xMnxO samples with the exception of Zn0.98Mn0.02O. We emphasize that the appearance of Mn3O4 phase in the system forbids the exchange type of interaction between the Mn ions and suppresses the ferromagnetism in all the Mn over-doped Zn1−xMnxO (x>0.02) system. SEM microstructure study also supports the interruption of exchange type of interaction inside the system with the increase in Mn concentration in the sample. Interestingly, for this particular composition, Zn0.98Mn0.02O sintered at 500 °C, glassy ferromagnetism type of transition is observed at low temperature. This type of transition is attributed to the formation of the oxides of Mn clusters at low temperature.  相似文献   

4.
The surface modification of Cd1−xMnxTe (x = 0-0.3) crystal wafers under pulsed laser irradiation has been studied. The samples were irradiated by a Q-switched ruby laser with pulse duration of 80 ns. Optical diagnostics of laser-induced thermal processes were carried out by means of time-resolved reflectivity measurements at wavelengths 0.53 and 1.06 μm. Laser irradiation energy density, E varied in the range of 0.1-0.6 J/cm2. Morphology of irradiated surface was studied using scanning electron microscopy. The energy density whereby the sample surface starts to melt, depends on Mn content and is equal to 0.12-0.14 J/cm2 for x ≤ 0.2, in the case of x = 0.3 this value is about 0.35 J/cm2. The higher Mn content leads to higher melt duration. The morphology of laser irradiated surface changes from a weakly modified surface to a single crystal strained one, with an increase in E. Under irradiation with E in the range of 0.21-0.25 J/cm2, the oriented filamentary crystallization is observed. The Te inclusions on the surface are revealed after the irradiation of samples with small content of Mn.  相似文献   

5.
Zn1−xCoxO (0 ≤ x ≤ 0.15) thin films grown on Si (1 0 0) substrates were prepared by a sol-gel technique. The effects of Co doped on the structural, optical properties and surface chemical valence states of the Zn1−xCoxO (0 ≤ x ≤ 0.15) films were investigated by X-ray diffraction (XRD), ultraviolet-visible spectrometer and X-ray photoelectron spectroscopy (XPS). XRD results show that the Zn1−xCoxO films retained a hexagonal crystal structure of ZnO with better c-axis preferred orientation compared to the undoped ZnO films. The optical absorption spectra suggest that the optical band-gap of the Zn1−xCoxO thin films varied from 3.26 to 2.79 eV with increasing Co content from x = 0 to x = 0.15. XPS studies show the possible oxidation states of Co in Zn1−xCoxO (0 ≤ x ≤ 0.05), Zn0.90Co0.10O and Zn0.85Co0.15O are CoO, Co3O4 and Co2O3, with an increase of Co content, respectively.  相似文献   

6.
Nanocrystalline Zn1−xMnxO(x=0−0.1) powders are prepared by polymeric precursor method and their structural and magnetic properties carefully studied. X-ray diffraction studies and Raman spectroscopy reveal that Mn2+ ions have substituted the Zn2+ ion without changing the würtzite structure of pristine ZnO up to Mn concentrations x≤0.05. The presence of a secondary phase, related to the solubility of Mn in ZnO is evident for higher Mn-doping concentrations. The negative value obtained for the Curie–Weiss temperature indicates that the interactions between the Mn ions are predominantly antiferromagnetic. Thus, no bulk ferromagnetism is evident in any of the studied samples.  相似文献   

7.
A series of polycrystalline ferrites having nominal chemical composition Co0.50−xMnxZn0.5Fe2O4 (0<x<0.4) have been synthesized by the solid-state reaction technique. The XRD analysis confirms single phase cubic spinel structure for all compositions. Lattice constant increases from 0.84195 to 0.84429 nm with the increasing Mn content and obeys Vegard's law. The average grain size increases by increasing both Mn content and sintering temperatures. Room temperature saturation magnetization increases for x=0.1 and decreases for increasing Mn content. The coercivity decreases with increasing Mn content due to the decrease of anisotropy constant. A reentrant spin glass behavior of these samples is observed from the zero field cooled magnetization measurements. The real part of the initial permeability increases by increasing both Mn content and sintering temperatures. This is due to the homogeneous grain growth and densification of the ferrites. The highest initial permeability 137 is observed for x=0.4 sintered at 1573 K on the other hand, the highest relative quality factor (2522) is obtained for the sample Co0.2Mn0.3Zn0.5Fe2O4 sintered at 1523 K. The Mn substituted Co0.50−xMnxZn0.5Fe2O4 ferrites showed improved magnetic properties.  相似文献   

8.
Crystal Zn1−xMnxO magnetic semiconductors have been obtained by using a hydrothermal method for the first time at temperature of 703 K with substituent fraction ranging from x=0 to 0.04. X-ray diffraction and optical absorption measurements provide evidence for the locating at Zn site of Mn ion in ZnO crystals. The non-monotonic variation of band gap indicates the short-ranged interactions of sp-d electrons. However, no evidence of ferromagnetism is found in these systems down to T=2 K. The magnetization is found to be contributed from both free spins and spins associated with antiferromagnetic clusters. The antiferromagnetism is confirmed by fitting a Curie-Weiss function.  相似文献   

9.
This Letter reports on structural and photoluminescence properties of Zn1 − xMnxO nanocrystalline powders, which were synthesized by using oxalate precursor decomposition method. From the XRD features, we have noticed that all samples exhibit wurtzite crystal structure. The origin of photoluminescence properties of Mn doped and undoped ZnO have been discussed.  相似文献   

10.
We report on the ferromagnetic characteristics of Zn1−xMnxO films (x=0.1-0.3) prepared by the sol-gel method on silicon substrates using transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and superconducting quantum interference device (SQUID) magnetometry at various temperatures. Magnetic measurement show that the Curie temperature (TC) and the coercive field (HC) were ∼39 K and ∼2100 Oe for the film of x=0.2, respectively. EDS and TEM measurements indicate that Mn content at the interface is significantly higher than that at the center of the Zn0.8Mn0.2O film showing the ratio, Zn:Mn:O≅1:12:15. This experimental evidence suggests that ferromagnetic precipitates containing manganese oxide may be responsible for the observed ferromagnetic behavior of the film.  相似文献   

11.
Cd1−xMnxS nano-crystalline films (0 ≤ x ≤ 0.5) were formed on glass substrates by thermal evaporation technique at room temperature (300 K). AFM studies showed that all the films were in nano-crystalline form with the grain size varying in the range between 36 and 58 nm and exhibited hexagonal structure of the host material. The lattice parameters varied linearly with composition, following Vegard's law in the entire composition range. The nanohardness and Young's modulus decreased sharply with ‘Mn’ content upto x = 0.3 and increased with high Mn content.  相似文献   

12.
In view of recent controversies on above room-temperature ferromagnetism (RTFM) in transition-metal-doped ZnO, the present paper aims to shed some light on the origin of ferromagnetism by investigating annealing effects on structure and magnetism for polycrystalline Zn1−xMnxO powder samples prepared by solid-state reaction method and annealed in air at different temperatures. Magnetic measurements indicate that the samples are ferromagnetic at room temperature (RTFM). Room temperature ferromagnetism has been observed in the sample annealed at a low temperature of 500 °C with a saturated magnetization (Ms) of 0.159 emu/g and a coercive force of 89 Oe. A reduction in RTFM is clearly observed in the sample annealed at 600 °C. Furthermore, the saturation magnetic moment decreases with an increase in grain size, suggesting that ferromagnetism is due to defects and/or oxygen vacancy confined to the surface of the grains. The experimental results indicate that the ferromagnetism observed in Zn1−xMnxO samples is intrinsic rather than associated with secondary phases.  相似文献   

13.
Single-phase Zn1−xCoxO (0.02≤x≤0.08) dilute magnetic semiconductor is prepared by mechanical milling process. The shift of XRD peaks towards the higher angle and a redshift in the band gap compared to the undoped ZnO ensure the incorporation of Co2+ ions in the semiconductor host lattice. Pure ZnxCo1−xO phases show the paramagnetic behavior in the temperature range 80 K≤T≤300 K. The room temperature volume magnetic susceptibility (χv) estimated in case of Zn0.96Co0.04O is ∼10−5 emu/Oe cm3. The temperature dependence of susceptibility χv can be fitted well with Curie law confirming the paramagnetic interaction. The observed crystal-field splitting of 3d levels of Co2+ ions inside Zn1−xCoxO has been successfully interpreted using Curie law.  相似文献   

14.
Uniform and transparent thin films of Zn1−xMnxO (0?x?0.10) were fabricated by a sol-gel spin coating method. XRD results indicated the hexagonal structure of ZnO as the primary phase at all concentrations (x) of Mn. However, at x?0.035, Mn3O4 (tetragonal) is observed as the secondary phase, which was confirmed by selected-area electron diffraction patterns. SEM and TEM results showed a tendency of grains to arrange into wire-shaped morphologies, leading to elongated needle-like structures at high Mn addition. Increasing Mn content in the range 0?x?0.10 led to quenching of photoluminescence, increase in the band gap (Eg) from 3.27 to 3.33 eV, and increase in film thickness, refractive index and extinction coefficient of Zn1−xMnxO thin films. The residual stress evaluated was compressive in all cases and found to increase by an order of magnitude with addition of Mn. Furthermore, an overall increase in microhardness and yield strength of Zn1−xMnxO thin films at higher Mn concentrations is attributed to change in microstructures, presence of secondary phase and increase in film thickness.  相似文献   

15.
Complex permittivity, permeability and microwave absorbing properties of a U-type hexaferrite series Ba4Mn(2−x)ZnxFe36O60 (with 0≤x≤2 in step of 0.5) have been examined in the X-band (8.2-12.4 GHz) frequency range. The series have been prepared using conventional solid state reaction route. Microstructural variations with composition have been found with X-ray diffraction (XRD) and scanning electron microgram (SEM). The complex permittivity (ε?=ε′jε″) and permeability ?=μ−jμ″) were measured using vector network analyzer (Agilient Make model PNA E8364B). These parameters were then used for calculating the reflection loss for determination of microwave absorbing properties. Addition of Zn resulted in an increase in reflection loss from −4 dB (or 60 % absorption) in sample with x= 0 to −32 dB (99.92% absorption) in sample with x=1 when the sample thickness was 1.7 mm. Multiple peaks of resonance were obtained in the dielectric and magnetic loss spectra for all samples with x>0. The result indicates that the sample with composition Ba4MnZnFe36O60, i.e., x=1, can be used effectively for microwave absorption and suppression of electromagnetic interference.  相似文献   

16.
Zn1−xMnxSe/GaAs (1 0 0) epilayers were grown using a hot-wall epitaxy method. The spectroscopic ellipsometry was used to determine the optical dielectric constant. The obtained pseudodielectric function spectra revealed the distinct structures at energies of E0, E0 + Δ0, E1, E1 + Δ1, E2 and  + Δ0 critical points (CPs) at lower Mn composition range. These critical points were determined by analytical line-shapes fitted to numerically calculated derivatives of their pseudodielectric functions. The peak characteristics were changed with the change in Mn composition. The spectral dependence of pseudodielectric function 〈?〉 was used to obtain the fundamental energy gaps E0 including a unique relation with Mn composition. Also, the shifting and broadening of the CPs were observed with increasing Mn composition.  相似文献   

17.
Hydrogenated Mn doped Zn1−xMnxO (x = 0.03, 0.04, 0.08) nanoparticles were prepared by co-precipitation method. With the increase of Mn ions concentration, the magnetization of the hydrogenated Zn1−xMnxO increased. Photoluminescence spectra of samples annealed in Ar and H2 respectively were performed and the visible bands were fitted with Gaussian analysis. It is concluded that the sharp magnetization enhancement could be attributed to the long-rang interaction between bound-magnetic-polarons led by the singly charged oxygen vacancy (Vo+).  相似文献   

18.
Ternary polycrystalline Zn1−xCdxO semiconductor films with cadmium content x ranging from 0 to 0.23 were obtained on quartz substrate by pulse laser deposited (PLD) technique. X-ray diffraction measurement revealed that all the films were single phase of wurtzite structure grown on c-axis orientation with its c-axis lattice constant increasing as the Cd content x increasing. Atomic force microscopy observation revealed that the grain size of Zn1−xCdxO films decreases continuously as the Cd content x increases. Both photoluminescence and optical measurements showed that the band gap decreases from 3.27 to 2.78 eV with increasing the Cd content x. The increase in Cd content x also leads to the broadening of the emission peak. The resistivity of Zn1−xCdxO films decreases evidently for higher values of Cd content x. The shift of PL emission to visible light as well as the decrease of resistivity makes the Zn1−xCdxO films potential candidate for optoelectronic device.  相似文献   

19.
Nanoscale Cu1−xMnxO powder is prepared by using the combustion synthesis technique with two different fuels. The structural properties of the powder are determined using Rietveld refinement of X-ray diffraction data, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy, while its magnetic properties are analyzed by means of hysteresis loop and temperature dependence of magnetization. The results show that (1) the Cu1−xMnxO nanocrystal is of monoclinic CuO structure, with grain size of 10-30 nm varying with the type of fuel, the nitrate/fuel ratio (N/F), and the Mn concentration, the doping of Mn has a little influence on the lattice parameters; (2) when the Mn concentration is higher than 7%, a small amount of impurity phase of CuMn2O4 appears and annihilates the potential cation vacancies; (3) all of the samples with x≥5% exhibit low-temperature ferromagnetism with the Curie temperature of ∼90 K, which increases slightly by raising the Mn concentration; (4) the paramagnetic moment per Mn ion is around 2-4 bohr magneton above the Curie temperature, which decreases with increasing Mn concentration, implying that the nearest Mn ions are antiferromagnetically coupled and the ferromagnetic order could originate from the super-exchange of next nearest Mn ions along the [1 0 1?] direction.  相似文献   

20.
Melt spun Ni50−xMn37+xIn13 (2≤x≤5) ribbons were investigated for the structure, microstructure, magneto-structural transitions and inverse magnetocaloric effect (IMCE) associated with the first-order martensitic phase transition. The influence of excess Mn in Ni site (or Ni/Mn content) on the martensite transition and the associated magnetic and magnetocaloric properties are discussed. It was found that with the increase in Mn content, the martensitic transition shifted from 325 to 240 K as x is varied from 2 to 4, and the austenite phase was stabilized at room temperature. The x=5 ribbon did not show the martensitic transition. For the x=3 ribbon, the structural and magnetic transitions are close together unlike in the x=4 ribbon in which they are far (∼60 K) apart. The zero field cooled and field cooled curves support the presence of exchange bias blocking temperature due to antiferromagnetic interactions in the ribbons. A large change in the magnetization between the martensite and austenite phases was observed for a small variation in the Ni/Mn content, which resulted in large IMCE. A large positive magnetic entropy change (ΔSM) of 32 J/kg K at room temperature (∼ 300 K) for a field change of 5 T with a net refrigeration capacity of 64 J/kg was obtained in the Ni47Mn40In13 ribbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号