首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
SrAl2O4:Eu2+,Dy3+ thin films were grown on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique to investigate the effect of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological, photoluminescence (PL) and cathodoluminescence (CL) properties of the films. The films were ablated using a 248 nm KrF excimer laser. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and fluorescence spectrophotometry were used to characterize the thin films. Auger electron spectroscopy (AES) combined with CL spectroscopy were employed for the surface characterization and electron-beam induced degradation of the films. Better PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres with respect to those prepared in vacuum. A stable green emission peak at 515 nm, attributed to 4f65d1→4f7 Eu2+ transitions were obtained with less intense peaks at 619 nm, which were attributed to transitions in Eu3+. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The CL intensity increased under prolonged electron bombardment during the removal of C due to electron stimulated surface chemical reactions (ESSCRs) on the surface of the SrAl2O4:Eu2+, Dy3+ thin films. The CL stabilized and stayed constant thereafter.  相似文献   

2.
SrAl2O4:Eu2+, Dy3+ thin films were grown on Si (1 0 0) substrates in different atmospheres using the pulsed laser deposition (PLD) technique. The effects of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological and photoluminescence (PL) properties of the films were investigated. The films were ablated using a 248 nm KrF excimer laser. Improved PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres compared to those prepared in vacuum. A stable green emission peak at 520 nm, attributed to 4f65d1→4f7 Eu2+ transitions was obtained. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The diffusion of adventitious C into the nanostructured layers deposited in the Ar and O2 atmospheres was most probably responsible for the quenching of the PL intensity after annealing.  相似文献   

3.
The current work reports on the influence of the number of laser pulses on the morphological and photoluminescence properties of SrAl2O4:Eu2+,Dy3+ thin films prepared by the pulsed laser deposition (PLD) technique. Atomic force microscopy (AFM) was used to study the surface topography and morphology of the films. The AFM data showed that the film deposited using a higher number of laser pulses was packed with a uniform layer of coarse grains. In addition, the surface of this film was shown to be relatively rougher than the films deposited at a lower number of pulses. Photoluminescence (PL) data were collected using the Cary Eclipse fluorescence spectrophotometer equipped with a monochromatic xenon lamp. An intense green photoluminescence was observed at 517 nm from the films prepared using a higher number of laser pulses. Consistent with the PL data, the decay time of the film deposited using a higher number of pulses was characteristically longer than those of the other films. The effects of laser pulses on morphology, topography and photoluminescence intensity of the SrAl2O4:Eu2+,Dy3+ thin films are discussed.  相似文献   

4.
Strontium aluminate phosphors are ideal for luminescent infrastructure materials. Their brightness and persistent glow time are much higher than previously used sulphide phosphors. Strontium aluminates prepared by the sol–gel and combustion methods are compared with commercially available strontium aluminate. High luminescent efficient SrAl2O4:Eu2+,Dy3+ pulsed laser deposited (PLD) thin films were also produced using the commercially available powder. Photoluminescence (PL) degradation studies showed that the phosphor intensity decreased about 20% over a period of 2 weeks under ultraviolet (UV) irradiation. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) showed that cathodoluminescence (CL) degradation is due to the formation of SrO due to electron stimulated surface reactions. The light output mechanism of the phosphor is also discussed in more detail.  相似文献   

5.
Long persistent SrAl2O4:Eu2+ phosphors co-doped with Dy3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl2O4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl2O4:Eu2+, Dy3+ were observed and the emission is attributed to the 4f65d1 to 4f7 transition of Eu2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.  相似文献   

6.
This paper presents the X-ray Photoelectron Spectroscopy (XPS) analysis for the undegraded and degraded Gd2O2S:Tb3+ thin film phosphor. The thin films were grown with the pulsed laser deposition (PLD) technique. XPS measurements were done on Gd2O2S:Tb3+ phosphor thin films before and after electron degradation. The XPS technique has proven the presence of Gd2O3 on the degraded and undegraded thin film spots. The presence of the SO2 bonding was also detected after degradation. This clearly indicates that surface reactions did occur during prolonged electron bombardment in an oxygen atmosphere.  相似文献   

7.
BaAl2O4:Eu2+,Nd3+,Gd3+ phosphors were prepared by a combustion method at different initiating temperatures (400–1200 °C), using urea as a comburent. The powders were annealed at different temperatures in the range of 400–1100 °C for 3 h. X-ray diffraction data show that the crystallinity of the BaAl2O4 structure greatly improved with increasing annealing temperature. Blue-green photoluminescence, with persistent/long afterglow, was observed at 498 nm. This emission was attributed to the 4f65d1–4f7 transitions of Eu2+ ions. The phosphorescence decay curves were obtained by irradiating the samples with a 365 nm UV light. The glow curves of the as-prepared and the annealed samples were investigated in this study. The thermoluminescent (TL) glow peaks of the samples prepared at 600 °C and 1200 °C were both stable at ∼72 °C suggesting that the traps responsible for the bands were fixed at this position irrespective of annealing temperature. These bands are at a similar position, which suggests that the traps responsible for these bands are similar. The rate of decay of the sample annealed at 600 °C was faster than that of the sample prepared at 1200 °C.  相似文献   

8.
Sr2MgSi2O7:Eu2+, Dy3+ phosphors were prepared by the (aminopropyl)-triethoxysilane (APTES) co-precipitation method. Effects of synthesis temperature on the crystal characteristics, luminescent properties and afterglow performance of Sr2MgSi2O7:Eu2+, Dy3+ phosphors have been discussed in detail and compared with the corresponding commercial product. The experimental results indicated that the sample could be synthesized at a relatively lower temperature and had better performance on the above-mentioned properties using the co-precipitation method.  相似文献   

9.
A nonhydrolytic hot solution synthesis technique was used to grow monodisperse ternary oxide nanocrystals of ZnGa2O4:Eu3+. The shape of ZnGa2O4:Eu3+ nanocrystals was a function of the type of precursor, and their size was controlled by changing the concentration ratio of Zn precursor to surfactant. The crystal structure of synthesized ZnGa2O4 nanocrystals was a cubic spinel with no detectable secondary phases. Photoluminescence of red-emitting ZnGa2O4:Eu3+ nanocrystals resulted in a high (5D0-7F2)/(5D0-7F1) intensity ratio, suggesting that the Eu3+ ions occupy tetrahedral Zn2+ sites or distorted octahedral Ga3+ sites with no inversion symmetry in ZnGa2O4 nanocrystals.  相似文献   

10.
Zinc phosphate glasses doped with Gd2O3:Eu nanoparticles and Eu2O3 were prepared by conventional melt-quench method and characterized for their luminescence properties. Binary ZnO-P2O5 glass is characterized by an intrinsic defect centre emission around 324 nm. Strong energy transfer from these defect centres to Eu3+ ions has been observed when Eu2O3 is incorporated in ZnO-P2O5 glasses. Lack of energy transfer from these defect centres to Eu3+ in Gd2O3:Eu nanoparticles doped ZnO-P2O5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between the luminescent centre and Eu3+ ions. Both doped and undoped glasses have the same glass transition temperature, suggesting that the phosphate network is not significantly affected by the Gd2O3:Eu nanoparticles or Eu2O3 incorporation.  相似文献   

11.
Y2O3:Eu3+ nanocrystals were prepared by combustion synthesis. The particle size estimated by X-ray powder diffraction (XRD) was about 10 nm. A blue-shift of the charge-transfer (CT) band in excitation spectra was observed in Y2O3:Eu3+ nanocrystals compared with bulk Y2O3:Eu3+. The electronic structure of Y2O3 is calculated by density functional method and exchange and correlation have been treated by the generalized gradient approximation (GGA) within the scheme due to Perdew-Burke-Ernzerhof (PBE). The calculated results show that the energy centroid of 5d orbital in nanocrystal has increasing trend compared with that in the bulk material. The bond length and bond covalency are calculated by chemical bond theory. The bond lengths of Y2O3:Eu3+ nanocrystal are shorter than those of the bulk counterpart and the bond covalency of Y2O3:Eu3+ nanocrystal also has an increasing trend. By combining centroid shift and crystal-field splitting, the blue-shift of the CT band is interpreted.  相似文献   

12.
A novel and efficient method of providing moisture resistance of inorganic particles such as divalent europium activated strontium aluminate phosphors (Sr4Al14O25:Eu2+/Dy3+) was developed by firing the phosphor in the presence of appropriate amount of ammonium fluoride at a temperature of 600-700 °C. Scanning electron microscopy, X-ray diffraction, FT-IR, EDAX and Photoluminescence measurements were carried out to characterize the uncoated and coated samples. The pH measurements were carried out for the water resistivity measurements. The phosphor particles became coated with a moisture-impervious thin coating that did not suppress the luminescence of the phosphor and can withstand complete immersion in water for long periods of time, showing very high water resistivity.  相似文献   

13.
Red-emitting Y2O3:Eu3+ and green-emitting Y2O3:Tb3+ and Y2O3:Eu3+, Tb3+ nanorods were synthesized by hydrothermal method. Their structure and micromorphology have been analyzed by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). The photoluminescence (PL) property of Y2O3:Eu3+,Tb3+ phosphor was investigated. In the same host (Y2O3), upon excitation with ultraviolet (UV) irradiation, it is shown that there are strong emissions at around 610 and 545 nm corresponding to the forced electric dipole 5D0-7F2 transition of Eu3+ and 5D4-7F5 transition of Tb3+, respectively. Different qualities of Eu3+and Tb3+ ions are induced into the Y2O3 lattice. From the excitation spectrum, we speculate that there exists energy transfer from Tb3+ to Eu3+ ions .The emission color of powders reveals regular change in the separation of light emission. These powders can meet with the request of optical display material for different colors or can be potentially used as labels for biological molecules.  相似文献   

14.
Ce3+ and Dy3+ activated Li2CaGeO4 phosphors were prepared by a solid-state reaction method, and characterized by XRD (X-ray diffraction) and photoluminescence techniques. The characteristic emission bands of Dy3+ due to 4F9/26H15/2 (blue) and 4F9/26H13/2 (yellow) transitions were detected in the emission spectra of Li2CaGeO4:Dy3+. Ce3+ broad band emission was observed in Li2CaGeO4:Ce3+ phosphors at 372 and 400 nm due to 5d→4f transition when excited at 353 nm. Co-doping of Ce3+ enhanced the luminescence of Dy3+ significantly and concentration quenching occurs when Dy3+ is beyond 0.04 mol%. White-light with different hues can be realized by tuning Dy3+ concentration in the phosphors.  相似文献   

15.
A red-emitting phosphor material, Gd2Ti2O7:Eu3+, V4+, by added vanadium ions is synthesized using the sol-gel method. Phosphor characterization by high-resolution transmission electron microscopy shows that the phosphor possesses a good crystalline structure, while scanning electron microscopy reveals a uniform phosphor particle size in the range of 230-270 nm. X-ray photon electron spectrum analysis demonstrates that the V4+ ion promotes an electron dipole transition of Gd2Ti2O7:Eu3+ phosphors, causing a new red-emitting phenomenon, and CIE value shifts to x=0.63, y=0.34 (a purer red region) from x=0.57, y=0.33 (CIE of Gd2Ti2O7:Eu3+). The optimal composition of the novel red-emitting phosphor is about 26% of V4+ ions while the material is calcinated at 800  °C. The results of electroluminescent property of the material by field emission experiment by CNT-contained cathode agreed well with that of photoluminescent analysis.  相似文献   

16.
The nanocrystalline Gd2O3:Eu3+ powders with cubic phase were prepared by a combustion method in the presence of urea and glycol. The effects of the annealing temperature on the crystallization and luminescence properties were studied. The results of XRD show pure phase can be obtained, the average crystallite size could be calculated as 7, 8, 15, and 23 nm for the precursor and samples annealed at 600, 700 and 800 °C, respectively, which coincided with the results from TEM images. The emission intensity, host absorption and charge transfer band intensity increased with increasing the temperature. The slightly broad emission peak at 610 nm for smaller particles can be observed. The ratio of host absorption to O2−-Eu3+ charge transfer band of smaller nanoparticles is much stronger compared with that for larger nanoparticles, furthermore, the luminescence lifetimes of nanoparticles increased with increasing particles size. The effects of doping concentration of Eu3+ on luminescence lifetimes and intensities were also discussed. The samples exhibited a higher quenching concentration of Eu3+, and luminescence lifetimes of nanoparticles are related to annealing temperature of samples and the doping concentration of Eu3+ ions.  相似文献   

17.
We have completed a study of the optical properties of SrY2O4:Eu3+ under vacuum ultraviolet (VUV) excitation. Reflectance measurements on the undoped material yield a calculated band gap of about 6.1 eV. Studies on the doped material indicate that Eu3+ occupies the Y(1) and Y(2) sites in this host. Host-to-activator energy transfer calculations indicate a preference for transfer to Eu3+ at the Y(2) site. Modeling of the transfer efficiency data leads us to estimate that about 35% of absorbed radiation is lost to the surface under excitation near the band edge.  相似文献   

18.
With the help of the Dexter's theory, the energy transfer mechanism from Pr3+1S0 to Cr3+ is investigated theoretically in SrAl12O19:Pr3+, Cr3+ quantum cutting phosphors. The electron spin resonance (ESR) spectra of Pr3+ and Cr3+-doped SrAl12O19 with magnetoplumbite structure have been studied. The Cr3+ ion is found to enter the Al4(4f) site, which is very close to the Sr(2d) site replaced by the Pr3+ ions in the host. The theoretical results indicate that the efficient Pr3+1S0→Cr3+ energy transfer can only take place in the intermediate mirror planes, in which for the nearest and next-nearest Pr3+-Cr3+ pairs, both dipole-dipole and dipole-quadrupole interactions can play their parts in the transfer. Finally, an overview is given about the research on the energy transfer from Pr3+1S0 to codopants in their co-doped materials.  相似文献   

19.
A new nanostructure-mediated approach was demonstrated to synthesize Eu3+-doped yttrium oxysulfates Y2O2SO4:Eu3+ giving rise to abnormally enhanced Eu3+ emission. Yttrium and europium salts, sodium dodecylsulfate (SDS), and urea at various Eu3+ concentrations were reacted in aqueous solution at 80, 85, and 87 °C to yield Eu3+-doped dodecylsulfate-templated yttrium oxide mesophases with straight-layered (S-type), concentric-layered (C-type) and layer-to-hexagonal transient-layered (T-type) structures, respectively. On calcination at 1000 °C, all of these mesophases were converted into Y2O2SO4:Eu3+ to exhibit luminescence bands including the 5D0-7F2 transition with a tendency in intensity to saturate or reach a maximum at 10-12 mol% Eu doping. The Eu3+ emissions for Y2O2SO4:Eu3+ mediated by the T- and C-type mesophases were enhanced in intensity by a factor of about two and three times, respectively, stronger than those for not only compositionally the same sulfate Y2O2SO4:Eu3+ obtained from yttrium-based sulfates but also Y2O3:Eu3+ obtained in the SDS-free system. In contrast, the emission intensities for the S-type-mesophase-mediated Y2O2SO4:Eu3+ were close to those for the latter sulfates. The abnormally enhanced emission is likely based on specific deformation of sulfate groups induced through the conversion of concentric dodecylsulfate-layers to straight sulfate-layers in the oxysulfate framework upon calcination.  相似文献   

20.
ZnGa2O4:Cr3+ thin films with bright red emission were synthesized using a sol-gel process, characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and UV-vis and fluorescence spectrophotometry measurements. Effects of calcining temperature, film thickness, calcining duration and substrates on the crystal structure and photoluminescent property have been investigated. It is found that the crystallinity, Ga/Zn ratio and band gap energy (Eg) are significant factors influencing optical characteristics, while the nature of substrates affect the surface morphologies of ZnGa2O4:Cr3+ thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号