首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With static relaxation, the surface diffusion activation energies of a single Cu adatom migrated by both atomic exchange and hopping mechanisms and the forces acted on the diffusing adatom from other atoms of Cu (0 0 1) or (1 1 0) surface are calculated by using the MAEAM. When adatom migrated on Cu (0 0 1) or (1 1 0) surface, the increment curves of the system energy by hopping mechanism are symmetrical and the saddle points are in the midpoints of the migration path, but the ones by the exchange mechanism are dissymmetrical and the saddle points are always close to the initial hole positions of the adatom and away from the initial equilibrium positions of the exchanged atom. From minimization of both the diffusion activation energy and the force acted on the diffusing adatom from other atoms, we found that, on Cu (0 0 1) surface the favorable diffusion mechanism is hopping mechanism, however, on Cu (1 1 0) surface, hopping via long bridge is easier than the exchange mechanism but the hopping via short bridge is more difficult than the exchange mechanism.  相似文献   

2.
Xueying Zhao 《Surface science》2006,600(10):2113-2121
The adsorption of glycine on Au(1 1 1) pre-deposited with different amounts of Cu was investigated with both conventional X-ray photoelectron spectroscopy (XPS) and synchrotron-based photoemission. In the Cu submonolayer range, glycine physically adsorbs on the Cu/Au(1 1 1) surfaces in its zwitterionic form and completely desorbs at 350 K. The C 1s, O 1s and N 1s core level binding energies monotonically increase with Cu coverage. This indicates that, in the Cu submonolayer range, the admetal is alloyed with Au rather than forming overlayers on the Au(1 1 1) substrate, consistent with our recent experimental and theoretical results [X. Zhao, P. Liu, J. Hrbek, J.A. Rodriguez, M. Pérez, Surf. Sci. 592 (2005) 25]. Upon increasing the amount of deposited Cu over 1 ML, part of the glycine overlayer transforms from the zwitterionic form to the anionic form (NH2CH2COO) and adsorbs chemically on the Cu/Au(1 1 1) surface with the N 1s binding energy shifted by −2.3 eV. When the amount of deposited Cu is at 3.0 or 6.0 ML, the intensity of the N 1s chemisorption peak increases with aging time at 300 K. It indicates that glycine adsorption induces Cu segregation from the subsurface region onto the top layer of the substrate. Judging from the initial N 1s peak intensities, it is concluded that 64% and 36% of the top layer are still occupied by Au atoms before glycine adsorption even when the amounts of deposited Cu are 3.0 and 6.0 ML, respectively. On the Au(1 1 1) surface pre-dosed with 6.0 ML of Cu, part of the chemisorbed glycine will desorb and part will decompose upon heating to 450-500 K. In addition, about 20% of the glycine exists in the neutral form when the glycine overlayer was dosed on Cu/Au(1 1 1) held at 100 K.  相似文献   

3.
Adsorption of CO molecules and Pb atoms on the Ni(1 1 1) and Ni3Al(1 1 1) substrates is studied theoretically within an ab initio density-functional-theory approach. Stable adsorption sites and the corresponding adsorption energies are first determined for stoichiometric surfaces. The three-fold hollow sites (fcc for Pb and hcp for CO) are found most favourable on both substrates. Next, the effect of surface alloying by a substitution of selected topmost substrate atoms by Pb or Ni atoms on the adsorption characteristics is investigated. When the surface Al atoms of the Ni3Al(1 1 1) substrate are replaced by Ni atoms, the Pb and CO adsorption energies approach those for a pure Ni(1 1 1) substrate. The Pb alloying has a more substantial effect. On the Ni3Al(1 1 1) substrate, it reduces considerably adsorption energy of CO. On the Ni(1 1 1) substrate, CO binding strengthens slightly upon the formation of the Ni(1 1 1)p(2×2)-Pb surface alloy, whereas it weakens drastically when the Ni(1 1 1)-Pb surface alloy is formed.  相似文献   

4.
Auger electron spectroscopy using excitation via grazing impact of protons was applied to determine the elemental composition of the topmost and near-surface layers of a NdGaO3(1 1 0) substrate. The preparation conditions of vicinal NdGaO3 substrates were optimized by varying the annealing temperature, time, and gas atmosphere. Well prepared surfaces show regularly arranged, atomically smooth terraces with single-atomic steps. The surfaces were always NdO terminated with a small amount of Ga (2-4%) atoms on the surface. A Ga and O depletion layer with a thickness of about 4 nm has been detected at optimized preparation conditions.  相似文献   

5.
The formation and migration mechanisms of three different point defects (mono-vacancy, anti-site defect and interstitial atom) in B2-type MoTa alloy have been investigated by combining molecular dynamics (MD) simulation with modified analytic embedded-atom method (MAEAM). From minimization of the formation energy, we find that the anti-site defects MoTa and TaMo are easier to form than Mo and Ta mono-vacancies, while Mo and Ta interstitial atoms are difficult to form in the alloy. In six migration mechanisms of Mo and Ta mono-vacancies, one nearest-neighbor jump (1NNJ) is the most favorable due to its lowest activation and migration energies, but it will cause a disorder in the alloy. One next-nearest-neighbor jump (1NNNJ) and one third-nearest-neighbor jump (1TNNJ) can maintain the ordered property of the alloy but require higher activation and migration energies, so the 1NNNJ and 1TNNJ should be replaced by straight [1 0 0] six nearest-neighbor cyclic jumps (S[1 0 0]6NNCJ) or bent [1 0 0] six nearest-neighbor cyclic jumps (B[1 0 0]6NNCJ) and [1 1 0] six nearest-neighbor cyclic jumps ([1 1 0]6NNCJ), respectively. Although the migrations of Mo and Ta interstitial atoms need much lower energy than Mo and Ta mono-vacancies, they are not main migration mechanisms due to difficult to form in the alloy.  相似文献   

6.
A c(6 × 4) structure formed on Cu(0 0 1) by the coadsorption of Mg and Bi atoms at room temperature has been determined by a tensor low energy electron diffraction analysis. It is an ordered surface ternary alloy with a thickness of single layer, in which Mg, Bi and Cu atoms are mixed in the top layer. In the primitive unit cell, there are one Mg, four Bi, six Cu atoms and one vacancy in the top layer, and substituted Mg and Bi atoms form MgBi4 plane clusters being arranged in the c(6 × 4) order. Structural parameters show that Mg-Bi bond distances in the MgBi4 cluster are 3.01 and 3.07 Å, which are shorter than the summation of metallic radii of Mg and Bi. It is concluded that a direct, attractive interaction between Mg and Bi atoms plays critical role in the formation of the c(6 × 4) structure.  相似文献   

7.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely.  相似文献   

8.
Structural and diffusion properties of a Cu(0 0 1)-c(2 × 2)-Pd surface and sub-surface ordered alloys are studied by using interaction potentials obtained from the embedded-atom method. The calculated diffusion energies are in agreement with observed kinetics of the surface alloy formation and confirm stability of the underlayer alloy. Activation energy of planar diffusion of palladium at the initial stage of the alloy formation as well as the activation energy of the overlayer-underlayer diffusion of the Pd atoms are in good agreement with those obtained by the scanning tunneling microscopy and low energy electron diffraction measurements, respectively.  相似文献   

9.
Recent high-pressure scanning tunneling microscopy studies, performed at room temperature, have explicitly demonstrated the specifics of the CO-mediated removal of Ni atoms from the topmost layer of an Au/Ni(1 1 1) surface alloy. After an incubation period, the reaction is found to start at step edges. On each edge, a large fraction of Ni atoms is removed from the terrace in certain areas, whereas other areas are nearly intact after a given time. With increasing time, the former areas begin to overlap and the reaction front becomes somewhat more homogeneous. The Au atoms remaining behind the front form nm-sized islands. Here, we present Monte Carlo simulations reproducing all these observations.  相似文献   

10.
M. Çakmak  E. Mete 《Surface science》2007,601(18):3711-3716
Ab initio calculations, based on pseudopotentials and density functional theory, have been performed to investigate the effect of hydrogenation on the atomic geometries and the energetics of substitutional boron on the generic Si(0 0 1)-(1 × 2) surface. For a single B atom substitution corresponding to 0.5 ML coverage, we have considered two different sites: (i) the mixed Si-B dimer structure and (ii) boron substituting for the second-layer Si to form Si-B back-bond structure, which is energetically more favorable than the mixed Si-B dimer by 0.1 eV/dimer. However, when both of these cases are passivated by hydrogen atoms, the situation is reversed and the Si-B back-bond case becomes 0.1 eV/dimer higher in energy than the mixed Si-B dimer case. For the B incorporation corresponding to 1 ML coverage, among the substitutional cases, 100% interdiffusion into the third layer of Si and 50% interdiffusion into the second layer of Si are energetically similar and more favorable than the other cases that are considered. However, when the surface is passivated with hydrogen, the B atoms energetically prefer to stay at the third layer of the Si substrate.  相似文献   

11.
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface.  相似文献   

12.
T. ?lusarski 《Surface science》2009,603(8):1150-22997
Adsorption of sulfur at the (1 0 0) surface of gold is analyzed with the help of the density functional theory (DFT). Potential energy surface for a single S atom at the Au(1 0 0) surface is computed and a simple analytical formula was found to reproduce the ab initio results to a good accuracy. Vibration frequencies of the adsorbed S atom are computed using the harmonic approximation and the contribution of zero-point motion to the adsorption energy is evaluated. The effects of surface Au atoms relaxation in the sulfur adsorption is analyzed. The interactions between S atoms adsorbed at the nearest and the next nearest equivalent adsorption sites are computed and used to define the effective Hamiltonian describing the interactions between the adsorbed sulfur atoms.  相似文献   

13.
The 3 × 3 and √3 × √3 reconstructions on 6H-SiC(0 0 0 1) surface were obtained via depositing thin silicon layer and annealing it in ultrahigh vacuum (without Si flux). Rocking curves of reflection high energy electron diffraction (RHEED) were measured for integer and fractional order beams. They were fitted with results of many-beam calculation on the basis of dynamical theory of RHEED to determine structural parameters. For √3 × √3 superstructure, it was found that the occupancy of adatom states is 0.45 (incomplete coverage). In the sequence of Si-C double layers ABCACB, the lattice is terminated with the layer A. For 3 × 3 superstructure, the rocking curves support the model with twisted tetra-cluster. The best-fit twist is as half of that predicted in ab initio calculations; it is due to limited source of Si atoms to build up the superstructure. Larger twist correlates with higher occupancy of corner sites and with slower cooling rate of the sample after annealing.  相似文献   

14.
We report on the precise location of Cl atoms chemisorbed on a Cu(0 0 1) surface and the interlayer relaxations of the metal surface. Previous studies have shown that chlorine dissociates on Cu(0 0 1) to form a c(2 × 2) chemisorbed layer with Cl atoms occupying four-fold hollow sites. A Cu-Cl interlayer spacing of 1.60 Å and a slightly expanded Cu-Cu first interlayer spacing of 1.85 Å (1.807 Å for bulk Cu) was determined by LEED. The resulting Cu-Cl bond length, 2.41 Å, is very similar to the SEXAFS value of 2.37 Å. Contradictory results were obtained by angle-resolved photoemission extended fine structure: while confirming the Cu-Cl interlayer spacing of 1.60 Å, no first Cu-Cu interlayer relaxation has been observed. On the other hand, a small corrugation of the second Cu layer was pointed out. We carried out a detailed structural determination of the Cu(0 0 1)-c(2 × 2)-Cl system using surface X-ray diffraction technique with synchrotron radiation. We find a Cu-Cl interlayer spacing of 1.584(5) Å and confirm the expansion of the first Cu-Cu interlayer, with an average spacing of 1.840(5) Å. In addition, we observe a small corrugation of the second Cu layer, with Cu atoms just below Cl atoms more tightly bound to the surface layer, and even a second Cu-Cu interlayer expansion.  相似文献   

15.
Adsorption of 0.5 monolayers (ML) of Sb on the Au(1 1 0) surface resulted in the formation of a c(2 × 2) surface reconstruction. Analysis of surface X-ray diffraction data by a direct method revealed the existence of an ordered substitutional surface alloy, with every other hollow site occupied by Au and Sb atoms. Quantitative conventional χ2 refinement showed a contraction of 0.12 ± 0.03 Å in the spacing of the first Au layer to the second, an expansion of 0.13 ± 0.03 Å in the second-to-third layer distance, and an inward Sb displacement (rumpling) of 0.21 ± 0.04 Å. This surface phase proved to be extremely robust, with the long-range order of this arrangement remaining up to substrate temperatures of 900 K.  相似文献   

16.
Possible formation of stable Au atomic wire on the hydrogen terminated Si(0 0 1): 3×1 surface is investigated under the density functional formalism. The hydrogen terminated Si(0 0 1): 3×1 surface is patterned in two different ways by removing selective hydrogen atoms from the surface. The adsorption of Au on such surfaces is studied at different sub-monolayer coverages. At 4/9 monolayer (ML) coverage, zigzag continuous Au chains are found to be stable on the patterned hydrogen terminated Si(0 0 1): 3×1 surface. The reason for the stability of the wire structures at 4/9 ML coverage is explained. It is to be noted that beyond 4/9 ML coverage, the additional Au atoms may introduce clusters on the surface. The continuous atomic gold chains on the substrate may be useful for the fabrication of atomic scale devices.  相似文献   

17.
The electronic structure of the FCC, HCP and 2-fold bridge phases of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) surface alloy have been investigated using LCAO-DFT. Analysis of the total electron density, partial density-of-states (PDOS) and crystal orbital overlap population (COOP) curves for the system have shown a surprising similarity between the intra- and inter-layer Si-Cu bond for each phase. Low hybridization between the Si 3s and 3p orbitals results in a low directionality of the Si-Cu bond within each of phase. The Si 3s orbitals are shown to form covalent bonds with their surrounding Cu atoms whereas the Si 3p and 3d orbitals are shown to form combinations of covalent and metallic bonds. The Si-Cu interaction is shown clearly to extend to the second layer of the alloy in deference to previous studies of Si/Cu alloys.  相似文献   

18.
The stabilization of the unstable, polar copper terminated Cu2O(1 1 1) surface by reconstruction and hydroxylation was studied theoretically with static and molecular dynamics calculations at ab initio density functional theory (DFT) level. Surface reconstruction was investigated using extensive finite temperature molecular dynamics (MD) combined with a simulated annealing technique. Both the global minimum energy structure obtained during annealing the system at higher temperature (300 K) and the final ‘quenched’ structure which was obtained after cooling the system to 0 K show the expected reconstruction of the adsorbate-free surface. The copper atoms in the first layer and oxygen atoms in the second and third layers are markedly displaced, and the atomic planes merge together to form a uniform mixed layer, thereby minimizing the polarity of the surface. Surface hydroxylation by adsorption of OH or dissociated water was investigated using static optimization at 0 K. The results show that adsorption is exothermic and that the reconstruction characterizing the annealed OH-free surface does not occur in the presence of adsorbed OH. A surface coverage of 50% results in the surface structure that is the closest to the unrelaxed bulk terminated surface.  相似文献   

19.
The incorporations and migrations of the atomic oxygen in the topmost layer Si(1 0 0)-p(2 × 2) silicon surface, are investigated theoretically using density functional theory. We show that the diffusion is dependent on the starting and the final surrounding environment and does not simply consist in hops from one silicon-silicon bond to another. The activation energies range from 0.11 eV to 2.59 eV.  相似文献   

20.
The adsorption of calcium (Ca) atoms on a Cu(0 0 1) surface has been studied by low-energy electron diffraction (LEED) at 130, 300 and 400 K. It is found that a (4 × 4) was the only LEED pattern appeared at 400 K while a quasi-hexagonal structure was formed in a wide range of submonolayer coverage at 130 K. At 300 K, the (4 × 4) LEED spots were broad and weak. The (4 × 4) structure formed at 400 K was determined by a tensor LEED I-V analysis. It is a new-type of surface alloys consisting of five substitutional Ca atoms, nine surface Cu atoms, and two atomic vacancies in the unit cell. In spite of a quite large size-difference between Ca (3.94 Å) and Cu (2.55 Å) atoms, all Ca atoms are located at the substitutional sites. Among surface alloys so far reported, the atomic size ratio between Cu and Ca in the (4 × 4), 1.54, is the largest. Optimized structural parameters reveal that large lateral displacements of surface Cu atoms, being enabled by the appearance of the vacancies, allow the formation of the (4 × 4) structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号