首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we shall re-visit the well-known Schrödinger equation of quantum mechanics. However, this shall be realized as a marginal dynamics of a more general, underlying stochastic counting process in a complex Minkowski space. One of the interesting things about this formalism is that its derivation has very deep roots in a new understanding of the differential calculus of time. This Minkowski-Hilbert representation of quantum dynamics is called the Belavkin formalism; a beautiful, but not well understood theory of mathematical physics that understands that both deterministic and stochastic dynamics may be formally represented by a counting process in a second-quantized Minkowski space. The Minkowski space arises as a canonical quantization of the clock, and this is derived naturally from the matrix-algebra representation [1, 2] of the Newton-Leibniz differential time increment, dt. And so the unitary dynamics of a quantum object, described by the Schrödinger equation, may be obtained as the expectation of a counting process of object-clock interactions.  相似文献   

2.
This work concerns the problem associated with averaging principle for a higher order nonlinear Schrödinger equation perturbed by a oscillating term arising as the solution of a stochastic reaction–diffusion equation evolving with respect to the fast time. This model can be translated into a multiscale stochastic partial differential equations. Stochastic averaging principle is a powerful tool for studying qualitative analysis of stochastic dynamical systems with different time-scales. To be more precise, under suitable conditions, we prove that there is a limit process in which the fast varying process is averaged out and the limit process which takes the form of the higher order nonlinear Schrödinger equation is an average with respect to the stationary measure of the fast varying process. Finally, by using the Khasminskii technique we can obtain the rate of strong convergence for the slow component towards the solution of the averaged equation, and as a consequence, the system can be reduced to a single higher order nonlinear Schrödinger equation with a modified coefficient.  相似文献   

3.
A generalized Schrödinger equation containing correction terms to classical kinetic energy, has been derived in the complex vector space by considering an extended particle structure in stochastic electrodynamics with spin. The correction terms are obtained by considering the internal complex structure of the particle which is a consequence of stochastic average of particle oscillations in the zeropoint field. Hence, the generalised Schrödinger equation may be called stochastic Schrödinger equation. It is found that the second order correction terms are similar to corresponding relativistic corrections. When higher order correction terms are neglected, the stochastic Schrödinger equation reduces to normal Schrödinger equation. It is found that the Schrödinger equation contains an internal structure in disguise and that can be revealed in the form of internal kinetic energy. The internal kinetic energy is found to be equal to the quantum potential obtained in the Madelung fluid theory or Bohm statistical theory. In the rest frame of the particle, the stochastic Schrödinger equation reduces to a Dirac type equation and its Lorentz boost gives the Dirac equation. Finally, the relativistic Klein–Gordon equation is derived by squaring the stochastic Schrödinger equation. The theory elucidates a logical understanding of classical approach to quantum mechanical foundations.  相似文献   

4.
We study the dynamics of a quantum particle governed by a linear Schrödinger equation with a scaled Gaussian potential. In the weak coupling limit the average dynamics of such a particle can be described by a linear Boltzmann equation. In this work we prove a bound for the rate at which the average dynamics of the quantum particle approach linear Boltzmann equation dynamics. For the so called simple diagrams, we use a stationary phase approach to establish an asymptotic expansion that provides the bound. Our stationary phase approach also provides a simple, formal method for computing the Boltzmann limit. Our work uses and extends results developed by L. Erdös and H.T. Yau.  相似文献   

5.
We investigate the coarsening evolution occurring in a simplified stochastic model of the Discrete NonLinear Schrödinger (DNLS) equation in the so-called negative-temperature region. We provide an explanation of the coarsening exponent n=1/3, by invoking an analogy with a suitable exclusion process. In spite of the equivalence with the exponent observed in other known universality classes, this model is certainly different, in that it refers to a dynamics with two conservation laws.  相似文献   

6.
This work is a self-contained introduction to some basic aspects of the dynamics that occurs in biological populations. It focusses on the proportion (or frequency) of a population that carries a particular gene. We make use of the notion of a force, in the context of genetics and evolution, to describe the dynamics of the frequency in an effectively infinite population. We then show how randomness enters into the dynamics of populations with a finite size, a randomness known as random genetic drift. We derive an equation, involving random numbers, which describes how the frequency behaves in a population of finite size. It is shown that in some situations this equation exhibits irreversible absorption phenomena. These phenomena are associated with the extinction (or loss) of the gene, or the complete takeover by the gene (termed fixation), where 100% of the population carries the gene. Taking the theory further, we show how an approximation leads to a stochastic differential equation for the frequency, where random genetic drift takes the form of an additional contribution to the force, that randomly fluctuates. The stochastic differential equation is, in turn, related to a diffusion equation, which encompasses many fundamental phenomena. Because of this, the diffusion equation plausibly has a similar status in biology to the Schrödinger equation in physics. It is notable that both the Schrödinger equation and the diffusion equation have a somewhat similar mathematical structure: they both involve first order derivatives of time and second order derivatives of space (or the analogue of space). There are, however, some significant mathematical differences. In contrast to the Schrödinger equation, the diffusion equation can routinely have solutions which are singular, in that the solutions contain Dirac delta functions. The delta functions are not, however, problematic, and have an explicit biological significance. We illustrate results with some basic calculations and computer simulations.  相似文献   

7.
Stochastic derivations of the Schrödinger equation are always developed on very general and abstract grounds. Thus, one is never enlightened which specific stochastic process corresponds to some particular quantum mechanical system, that is, given the physical system—expressed by the potential function, which fluctuation structure one should impose on a Langevin equation in order to arrive at results identical to those comming from the solutions of the Schrödinger equation. We show, from first principles, how to write the Langevin stochastic equations for any particular quantum system. We also show the relation between these Langevin equations and those proposed by Bohm in 1952. We present numerical simulations of the Langevin equations for some quantum mechanical problems and compare them with the usual analytic solutions to show the adequacy of our approach. The model also allows us to address important topics on the interpretation of quantum mechanics.  相似文献   

8.
We discuss a discrete approach to the multiscale reductive perturbative method and apply it to a biatomic chain with a nonlinear interaction between the atoms. This system is important to describe the time evolution of localized solitonic excitations.

We require that also the reduced equation be discrete. To do so coherently we need to discretize the time variable to be able to get asymptotic discrete waves and carry out a discrete multiscale expansion around them. Our resulting nonlinear equation will be a kind of discrete Nonlinear Schrödinger equation. If we make its continuum limit, we obtain the standard Nonlinear Schrödinger differential equation.  相似文献   

9.
Following Schrödinger a stochastic interpretation of quantum mechanics is given based on the introduction of an intermediate probability in diffusion processes. The Schrödinger equation is derived following Nelson's approach and following a variational approach. Some problems of the quantum theory of measurement are discussed.  相似文献   

10.
The properties of Mittag-Leffler function are reviewed within the framework of an umbral formalism. We take advantage from the formal equivalence with the exponential function to define the relevant semigroup properties. We analyse the relevant role in the solution of Schrödinger type and heat-type fractional partial differential equations and explore the problem of operatorial ordering finding appropriate rules when non-commuting operators are involved. We discuss the coherent states associated with the fractional Schödinger equation, analyze the relevant Poisson type probability amplitude and compare with analogous results already obtained in the literature.  相似文献   

11.
《Physics letters. A》2005,337(3):166-182
Stochastic wave equations of Schrödinger type are widely employed in physics and have numerous potential applications in chemistry. While some accurate numerical methods exist for particular classes of stochastic differential equations they cannot generally be used for Schrödinger equations. Efficient and accurate methods for their numerical solution therefore need to be developed. Here we show that existing Runge–Kutta methods for ordinary differential equations (odes) can be modified to solve stochastic wave equations provided that appropriate changes are made to the way stepsizes are selected. The order of the resulting stochastic differential equation (sde) scheme is half the order of the ode scheme. Specifically, we show that an explicit 9th order Runge–Kutta method (with an embedded 8th order method) for odes yields an order 4.5 method for sdes which can be implemented with variable stepsizes. This method is tested by solving systems of equations originating from master equations and from the many-body Schrödinger equation.  相似文献   

12.
We consider the relation between so called continuous localization models—i.e. non-linear stochastic Schrödinger evolutions—and the discrete GRW-model of wave function collapse. The former can be understood as scaling limit of the GRW process. The proof relies on a stochastic Trotter formula, which is of interest in its own right. Our Trotter formula also allows to complement results on existence theory of stochastic Schrödinger evolutions by Holevo and Mora/Rebolledo.  相似文献   

13.
Ichiro Ohba 《Pramana》2002,59(2):397-404
From the advent of quantum mechanics, various types of stochastic-dynamical approach to quantum mechanics have been tried. We discuss how to utilize Nelson’s stochastic quantum mechanics to analyze the tunneling phenomena, how to derive relativistic field equations via the Poisson process and how to describe a quantum dynamics of open systems by the use of quantum state diffusion, or the stochastic Schrödinger equation.  相似文献   

14.
We construct Darboux transformations for a generalized Schrödinger equation by means of the intertwining operator method. We establish a relation between first-order Darboux transformations, supersymmetry, and factorization of the Hamiltonians that are associated with our generalized Schrödinger equation. Furthermore, our methods allow for the generation of isospectral potentials, where one of the potentials has additional or less bound states than its partner. In the particular case of a conventional Schrödinger equation our generalized Darboux transformations reduce correctly to the well-known expressions.  相似文献   

15.
《Nuclear Physics B》1999,561(3):451-466
A generalized inverse scattering method has been developed for arbitrary n-dimensional Lax equations. Subsequently, the method has been used to obtain N-soliton solutions of a vector higher order non-linear Schrödinger equation, proposed by us. It has been shown that under a suitable reduction, the vector higher order non-linear Schrödinger equation reduces to the higher order non-linear Schrödinger equation. An infinite number of conserved quantities have been obtained by solving a set of coupled Riccati equations. Gauge equivalence is shown between the vector higher order non-linear Schrödinger equation and the generalized Landau–Lifshitz equation and the Lax pair for the latter equation has also been constructed in terms of the spin field, establishing direct integrability of the spin system.  相似文献   

16.
The linear Schrödinger equation does not predict that macroscopic bodies should be located at one place only, or that the outcome of a measurement shoud be unique. Quantum mechanics textbooks generally solve the problem by introducing the projection postulate, which forces definite values to emerge during measurements; many other interpretations have also been proposed. Here, in the same spirit as the GRW and CSL theories, we modify the Schrödinger equation in a way that efficiently cancels macroscopic density fluctuations in space. Nevertheless, we do not assume a stochastic dynamics as in GRW or CSL theories. Instead, we propose a deterministic evolution that includes an attraction term towards the averaged density in space of the de Broglie-Bohm position of particles, and show that this is sufficient to ensure macroscopic uniqueness and compatibility with the Born rule. The state vector can then be seen as directly related to physical reality.  相似文献   

17.
The soliton perturbation theory is used to study and analyze the stochastic perturbation of optical solitons, with power law nonlinearity, in addition to deterministic perturbations, that is governed by the nonlinear Schrödinger’s equation. The Langevin equations are derived and analysed. The deterministic perturbations that are considered here are due to filters and nonlinear damping.  相似文献   

18.
We study the approach to equilibrium, described by a Gibbs measure, for a system on a d-dimensional torus evolving according to a stochastic nonlinear Schrödinger equation (SNLS) with a high frequency truncation. We prove exponential approach to the truncated Gibbs measure both for the focusing and defocusing cases when the dynamics is constrained via suitable boundary conditions to regions of the Fourier space where the Hamiltonian is convex. Our method is based on establishing a spectral gap for the non self-adjoint Fokker-Planck operator governing the time evolution of the measure, which is uniform in the frequency truncation N. The limit N →∞ is discussed.  相似文献   

19.
We prove the existence of periodic solutions in a class of nonlinear partial differential equations, including the nonlinear Schrödinger equation, the nonlinear wave equation, and the nonlinear beam equation, in higher dimension. Our result covers cases of completely resonant equations, where the bifurcation equation is infinite-dimensional, such as the nonlinear Schrödinger equation with zero mass, for which solutions which at leading order are wave packets are shown to exist.  相似文献   

20.
The dynamics of repulsive bosons condensed in an optical lattice is effectively described by the Bose-Hubbard model. The classical limit of this model, reproduces the dynamics of Bose-Einstein condensates, in a periodic potential, and in the superfluid regime. Such dynamics is governed by a discrete nonlinear Schrödinger equation. Several papers, addressing the study of the discrete nonlinear Schrödinger dynamics, have predicted the spontaneous generation of (classical) breathers in coupled condensates. In the present contribute, we shall focus on localized solutions (quantum breathers) of the full Bose-Hubbard model. We will show that solutions exponentially localized in space and periodic in time exist also in absence of randomness. Thus, this kind of states, reproduce a novel quantum localization phenomenon due to the interplay between bounded energy spectrum and non-linearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号